Serratia rubidaea SR19: A cadmium -tolerant bacteria enhancing phosphate solubilization, IAA production, and promoting cucumber seed germination

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biocatalysis and agricultural biotechnology Pub Date : 2025-03-01 DOI:10.1016/j.bcab.2025.103546
Alaa M. El-Minisy , Shawky A. Bekheet , Salah El-Din El-Assal , Mohammed Soliman , Ahmed M. Amer , Mohammed Hassan , Hattem M. El-Shabrawi , Adel El-Tarras
{"title":"Serratia rubidaea SR19: A cadmium -tolerant bacteria enhancing phosphate solubilization, IAA production, and promoting cucumber seed germination","authors":"Alaa M. El-Minisy ,&nbsp;Shawky A. Bekheet ,&nbsp;Salah El-Din El-Assal ,&nbsp;Mohammed Soliman ,&nbsp;Ahmed M. Amer ,&nbsp;Mohammed Hassan ,&nbsp;Hattem M. El-Shabrawi ,&nbsp;Adel El-Tarras","doi":"10.1016/j.bcab.2025.103546","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) contamination in soil poses significant environmental and health risks due to its toxicity. A sustainable way to detoxify heavy metals from soil is to use rhizobacteria that promote the growth of plants (PGPR). In this study, we measured the production of IAA and the solubility of inorganic phosphate to evaluate the plant growth-promoting traits of four isolates that show cadmium tolerance. None of the four isolates grew at 300 ppm cadmium chloride, indicating that this concentration represents the Minimum Inhibitory Concentration (MIC) for all isolates. Based on 16S rRNA molecular identification, four isolates are classified as <em>Serratia rubidaea.</em> The B3 isolate was selected for whole genome sequencing and deposited in the Japanese database as SR19 to clarify the genetic basis of features that promote plant growth and cadmium tolerance. Annotation revealed the presence of genes linked to heavy metal resistance, stress defense response, siderophore biosynthesis, nitrogen metabolism, sulfur metabolism, and phosphate solubilization. Additionally, we found that under both normal and cadmium stress conditions, <em>S. rubidaea</em> SR19 promoted the germination of cucumber seeds and the growth of seedlings <em>in vitro</em>. Our study suggests that using the isolated strain <em>S. rubidaea</em> SR19 may help mitigate the harmful effects of cadmium and other heavy metals in contaminated agricultural soil.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103546"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) contamination in soil poses significant environmental and health risks due to its toxicity. A sustainable way to detoxify heavy metals from soil is to use rhizobacteria that promote the growth of plants (PGPR). In this study, we measured the production of IAA and the solubility of inorganic phosphate to evaluate the plant growth-promoting traits of four isolates that show cadmium tolerance. None of the four isolates grew at 300 ppm cadmium chloride, indicating that this concentration represents the Minimum Inhibitory Concentration (MIC) for all isolates. Based on 16S rRNA molecular identification, four isolates are classified as Serratia rubidaea. The B3 isolate was selected for whole genome sequencing and deposited in the Japanese database as SR19 to clarify the genetic basis of features that promote plant growth and cadmium tolerance. Annotation revealed the presence of genes linked to heavy metal resistance, stress defense response, siderophore biosynthesis, nitrogen metabolism, sulfur metabolism, and phosphate solubilization. Additionally, we found that under both normal and cadmium stress conditions, S. rubidaea SR19 promoted the germination of cucumber seeds and the growth of seedlings in vitro. Our study suggests that using the isolated strain S. rubidaea SR19 may help mitigate the harmful effects of cadmium and other heavy metals in contaminated agricultural soil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
期刊最新文献
Co-production of bioethanol and xylitol from steam-exploded bamboo using the newly isolated yeast strain Sugiyamaella marilandica HYSM006 Optimising nutrient additives to improve delignification and biolipid production from oil palm empty fruit bunches (OPEFB) Serratia rubidaea SR19: A cadmium -tolerant bacteria enhancing phosphate solubilization, IAA production, and promoting cucumber seed germination Nitrogen ameliorates NaCl toxicity in eggplant seedlings: Role of hydrogen sulphide and sulphur metabolic signaling Ultrasound-assisted biodiesel production from Peltophorum pterocarpum oil: A comparative analysis of prediction accuracy between RSM and ANFIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1