Hassan Abdulrasul , Henry Brice , Kaja K. Jasińska
{"title":"Developmental timing of adversity and neural network organization: An fNIRS study of the impact of refugee displacement","authors":"Hassan Abdulrasul , Henry Brice , Kaja K. Jasińska","doi":"10.1016/j.dcn.2025.101532","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the neurodevelopmental impacts of displacement on resettled Syrian refugee children in Canada, focusing on how the timing and duration of adversity experienced during displacement influence neural network organization. Using graph theoretical approaches within a network neuroscience framework, we examined how the developmental timing of displacement (age of displacement, duration of displacement) related to functional integration, segregation, and small-worldness. Syrian refugee children (n = 61, M<sub>Age</sub>=14 Range = 8–18), completed a resting state scan using functional Near Infrared Spectroscopy (fNIRS) neuroimaging. Data were analyzed to assess the link between neural network properties and developmental timing of adversity. Results indicate that prolonged displacement experienced earlier in life was significantly linked with neural network organization, impacting the balance between the brain's functional integration and segregation as quantified by the overall reduced small worldness in comparison to experiencing displacement at an older age. This study leverages the experiences of refugee children to advance our understanding of how the timing of adversity affects development, providing valuable insights into the broader impacts of early adversity on neurodevelopment.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"73 ","pages":"Article 101532"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000271","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the neurodevelopmental impacts of displacement on resettled Syrian refugee children in Canada, focusing on how the timing and duration of adversity experienced during displacement influence neural network organization. Using graph theoretical approaches within a network neuroscience framework, we examined how the developmental timing of displacement (age of displacement, duration of displacement) related to functional integration, segregation, and small-worldness. Syrian refugee children (n = 61, MAge=14 Range = 8–18), completed a resting state scan using functional Near Infrared Spectroscopy (fNIRS) neuroimaging. Data were analyzed to assess the link between neural network properties and developmental timing of adversity. Results indicate that prolonged displacement experienced earlier in life was significantly linked with neural network organization, impacting the balance between the brain's functional integration and segregation as quantified by the overall reduced small worldness in comparison to experiencing displacement at an older age. This study leverages the experiences of refugee children to advance our understanding of how the timing of adversity affects development, providing valuable insights into the broader impacts of early adversity on neurodevelopment.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.