{"title":"Evaluating the catalytic potential of Lithium-decorated graphene quantum dots for small molecule activation","authors":"Nikhil S. Samudre , Rukminesh Tiwari","doi":"10.1016/j.chemphys.2025.112682","DOIUrl":null,"url":null,"abstract":"<div><div>The search for effective catalysts in small molecule activation has intensified as industries seek efficient and cost-effective solutions. Lithium (Li), known for its unique electronic properties, is of significant interest as a catalyst. However, its specific catalytic potential when anchored on graphene quantum dots (GQDs) has not been fully explored. This study investigates the catalytic potential of lithium (Li) adatoms on GQDs with various edge conformations (zigzag and armchair) and sizes (24 and 42 atoms). Using density functional theory (DFT), we examine the interactions of Li-decorated GQDs with small molecules such as H<sub>2</sub>, N<sub>2</sub>, CO, O<sub>2</sub>, and CO<sub>2</sub>. Our findings reveal that Li-GQD complexes exhibit optimal catalytic activity for all these molecules, based on binding energy, charge distribution, and bond length changes. The smallest GQD, coronene (24 carbon atoms), shows the most promising catalytic activity, providing experimental leads for synthesizing and testing efficient Li-anchored catalysts.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112682"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000837","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The search for effective catalysts in small molecule activation has intensified as industries seek efficient and cost-effective solutions. Lithium (Li), known for its unique electronic properties, is of significant interest as a catalyst. However, its specific catalytic potential when anchored on graphene quantum dots (GQDs) has not been fully explored. This study investigates the catalytic potential of lithium (Li) adatoms on GQDs with various edge conformations (zigzag and armchair) and sizes (24 and 42 atoms). Using density functional theory (DFT), we examine the interactions of Li-decorated GQDs with small molecules such as H2, N2, CO, O2, and CO2. Our findings reveal that Li-GQD complexes exhibit optimal catalytic activity for all these molecules, based on binding energy, charge distribution, and bond length changes. The smallest GQD, coronene (24 carbon atoms), shows the most promising catalytic activity, providing experimental leads for synthesizing and testing efficient Li-anchored catalysts.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.