An energy balance climate model for Mars represented by 4002 Goldberg polyhedrals with applications to ground ice re-distribution driven by obliquity cycles

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Planetary and Space Science Pub Date : 2025-03-04 DOI:10.1016/j.pss.2025.106077
Robert Olszewski , Piotr Pałka , Agnieszka Wendland , Alison F.C. Bridger , Melinda A. Kahre , Christopher P. McKay
{"title":"An energy balance climate model for Mars represented by 4002 Goldberg polyhedrals with applications to ground ice re-distribution driven by obliquity cycles","authors":"Robert Olszewski ,&nbsp;Piotr Pałka ,&nbsp;Agnieszka Wendland ,&nbsp;Alison F.C. Bridger ,&nbsp;Melinda A. Kahre ,&nbsp;Christopher P. McKay","doi":"10.1016/j.pss.2025.106077","DOIUrl":null,"url":null,"abstract":"<div><div>We have developed a surface energy balance model for Mars based on representing the surface of Mars with a Goldberg polyhedral of 4002 cells. The approach using discretization of space with Goldberg polygons made it possible not only to obtain homogeneous spatial resolution but also the absence of a singularity at the poles in the model. In addition to the radiation terms, the surface energy balance includes CO<sub>2</sub> condensation and evaporation, the diffusive exchange of heat between cells, heat exchange with the subsurface, and a representation of the large-scale transport of heat from the equator to pole. We validate the model by comparing model results to the Viking lander temperature and pressure data. The model results are within 10% in both temperature and pressure compared to both Viking 1 and Viking 2 landers. We also compare to current Mars GCMs. Our baseline model has a total exchangeable CO<sub>2</sub> mass equivalent to 700 Pa and a mean annual surface temperature of 215.9 K. We use the baseline model to investigate the effects of changes in obliquity on climate. With all other model parameters held constant we find that as the obliquity increases above ∼30° the mean annual vapor density of ground ice at the poles becomes greater than at the equator implying a net transfer of water from pole to equator. We also find there is 95% consistency with the MCD model in CO<sub>2</sub> ice formation. The Mars polyhedral model has high spatial resolution but is still computationally efficient and can be used to simulate a variety of processes on Mars, at present or in past and future epochs.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"259 ","pages":"Article 106077"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063325000443","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a surface energy balance model for Mars based on representing the surface of Mars with a Goldberg polyhedral of 4002 cells. The approach using discretization of space with Goldberg polygons made it possible not only to obtain homogeneous spatial resolution but also the absence of a singularity at the poles in the model. In addition to the radiation terms, the surface energy balance includes CO2 condensation and evaporation, the diffusive exchange of heat between cells, heat exchange with the subsurface, and a representation of the large-scale transport of heat from the equator to pole. We validate the model by comparing model results to the Viking lander temperature and pressure data. The model results are within 10% in both temperature and pressure compared to both Viking 1 and Viking 2 landers. We also compare to current Mars GCMs. Our baseline model has a total exchangeable CO2 mass equivalent to 700 Pa and a mean annual surface temperature of 215.9 K. We use the baseline model to investigate the effects of changes in obliquity on climate. With all other model parameters held constant we find that as the obliquity increases above ∼30° the mean annual vapor density of ground ice at the poles becomes greater than at the equator implying a net transfer of water from pole to equator. We also find there is 95% consistency with the MCD model in CO2 ice formation. The Mars polyhedral model has high spatial resolution but is still computationally efficient and can be used to simulate a variety of processes on Mars, at present or in past and future epochs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Planetary and Space Science
Planetary and Space Science 地学天文-天文与天体物理
CiteScore
5.40
自引率
4.20%
发文量
126
审稿时长
15 weeks
期刊介绍: Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered: • Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics • Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system • Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating • Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements • Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation • Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites • Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind • Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations • Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets • History of planetary and space research
期刊最新文献
Editorial Board Relaxation probe measurement in the Earth's and Titan's atmospheres: Effect of shadow An energy balance climate model for Mars represented by 4002 Goldberg polyhedrals with applications to ground ice re-distribution driven by obliquity cycles Production of carbon samples with extreme physical conditions using intense heavy ion beams at the facility for antiprotons and ion research: Application to planetary physics research Maximizing the velocity deflection of asteroid Didymos using the Whale Optimization Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1