Rui Ma , Qi Zhou , Shengyang Liu , Qin Yan , Mo Shi
{"title":"Security distance analysis of active distribution network considering energy hub demand response","authors":"Rui Ma , Qi Zhou , Shengyang Liu , Qin Yan , Mo Shi","doi":"10.1016/j.gloei.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a method for analyzing the security distance of an Active Distribution Network (ADN) by incorporating the demand response of an Energy Hub (EH). Taking into account the impact of stochastic wind-solar power and flexible loads on the EH, an interactive power model was developed to represent the EH’s operation under these influences. Additionally, an ADN security distance model, integrating an EH with flexible loads, was constructed to evaluate the effect of flexible load variations on the ADN’s security distance. By considering scenarios such as air conditioning (AC) load reduction and base station (BS) load transfer, the security distances of phases A, B, and C increased by 17.1 %, 17.2 %, and 17.7 %, respectively. Furthermore, a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm, the NSGA-II multi-objective optimization algorithm, and the maximum satisfaction method. The simulation results of the IEEE33 node system example demonstrate that after optimization, the total energy cost for one day is reduced by 0.026 %, and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA. This method effectively enhances the security distance, facilitates BS load transfer and AC load reduction, and contributes to the energy-saving, economical, and safe operation of the power system.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 1","pages":"Pages 160-173"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511725000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a method for analyzing the security distance of an Active Distribution Network (ADN) by incorporating the demand response of an Energy Hub (EH). Taking into account the impact of stochastic wind-solar power and flexible loads on the EH, an interactive power model was developed to represent the EH’s operation under these influences. Additionally, an ADN security distance model, integrating an EH with flexible loads, was constructed to evaluate the effect of flexible load variations on the ADN’s security distance. By considering scenarios such as air conditioning (AC) load reduction and base station (BS) load transfer, the security distances of phases A, B, and C increased by 17.1 %, 17.2 %, and 17.7 %, respectively. Furthermore, a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm, the NSGA-II multi-objective optimization algorithm, and the maximum satisfaction method. The simulation results of the IEEE33 node system example demonstrate that after optimization, the total energy cost for one day is reduced by 0.026 %, and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA. This method effectively enhances the security distance, facilitates BS load transfer and AC load reduction, and contributes to the energy-saving, economical, and safe operation of the power system.