Xing Huang , Yulin Chen , Donglian Qi , Yunfeng Yan , Shaohua Yang , Ying Weng , Xianbo Wang
{"title":"Hash-based FDI attack-resilient distributed self-triggered secondary frequency control for islanded microgrids","authors":"Xing Huang , Yulin Chen , Donglian Qi , Yunfeng Yan , Shaohua Yang , Ying Weng , Xianbo Wang","doi":"10.1016/j.gloei.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Given the rapid development of advanced information systems, microgrids (MGs) suffer from more potential attacks that affect their operational performance. Conventional distributed secondary control with a small, fixed sampling time period inevitably causes the wasteful use of communication resources. This paper proposes a self-triggered secondary control scheme under perturbations from false data injection (FDI) attacks. We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants. Subsequently, a hash-based defense mechanism (HDM) is designed for detecting and eliminating malicious data infiltrated in the MGs. With the aid of HDM, a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks. Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 1","pages":"Pages 1-12"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511725000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Given the rapid development of advanced information systems, microgrids (MGs) suffer from more potential attacks that affect their operational performance. Conventional distributed secondary control with a small, fixed sampling time period inevitably causes the wasteful use of communication resources. This paper proposes a self-triggered secondary control scheme under perturbations from false data injection (FDI) attacks. We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants. Subsequently, a hash-based defense mechanism (HDM) is designed for detecting and eliminating malicious data infiltrated in the MGs. With the aid of HDM, a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks. Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.