Improving the efficiency of solar thermal storage systems using TPMS: A pore-scale simulation

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-03-11 DOI:10.1016/j.solmat.2025.113569
Yi Zhang , Xiaokai Zhang , Hongyang Li , Shuai Li , Zhaoda Zhang , Mingrui Sun , Yongchen Song
{"title":"Improving the efficiency of solar thermal storage systems using TPMS: A pore-scale simulation","authors":"Yi Zhang ,&nbsp;Xiaokai Zhang ,&nbsp;Hongyang Li ,&nbsp;Shuai Li ,&nbsp;Zhaoda Zhang ,&nbsp;Mingrui Sun ,&nbsp;Yongchen Song","doi":"10.1016/j.solmat.2025.113569","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal efficiency of latent heat thermal energy storage (LHTES) systems based on phase change materials (PCMs) remains a significant barrier to their widespread adoption in solar energy and industrial processes. LHTES systems incorporating triply periodic minimal surface (TPMS) lattice within PCMs exhibited excellent heat storage performance. However, the influence of model height, a key structural parameter, on heat storage behavior of LHTES systems had not been quantitatively analyzed, hindering further optimization. This study used a simplified central column model to evaluate the heat storage behavior of two TPMS structures (I-WP and Primitive) at three heights (15, 30, and 45 mm), comparing them with traditional metal foams (BCC). The results revealed a significant reduction in thermal conduction with increasing model height, with I-WP exhibiting the largest decrease (49.4 % from 15 mm to 45 mm), followed by Primitive (46.2 %) and BCC (45.7 %). Convective heat transfer in both Primitive and BCC initially increased and then decreased with model height, whereas in I-WP, the effect of model height was less pronounced. Additionally, the study quantitatively analyzed how the performance advantage of the two TPMS structures over BCC changed with model height. I-WP's advantage over BCC decreased with increasing height (26.7 %–16.7 %), while Primitive showed an opposite trend, with its advantage increasing from 18.1 % to 21.4 %. At a model height of 15 mm, I-WP was the most efficient structure, whereas Primitive outperformed at 30 mm and 45 mm. These findings enhanced LHTES efficiency, supporting their application in solar thermal storage.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113569"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001709","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal efficiency of latent heat thermal energy storage (LHTES) systems based on phase change materials (PCMs) remains a significant barrier to their widespread adoption in solar energy and industrial processes. LHTES systems incorporating triply periodic minimal surface (TPMS) lattice within PCMs exhibited excellent heat storage performance. However, the influence of model height, a key structural parameter, on heat storage behavior of LHTES systems had not been quantitatively analyzed, hindering further optimization. This study used a simplified central column model to evaluate the heat storage behavior of two TPMS structures (I-WP and Primitive) at three heights (15, 30, and 45 mm), comparing them with traditional metal foams (BCC). The results revealed a significant reduction in thermal conduction with increasing model height, with I-WP exhibiting the largest decrease (49.4 % from 15 mm to 45 mm), followed by Primitive (46.2 %) and BCC (45.7 %). Convective heat transfer in both Primitive and BCC initially increased and then decreased with model height, whereas in I-WP, the effect of model height was less pronounced. Additionally, the study quantitatively analyzed how the performance advantage of the two TPMS structures over BCC changed with model height. I-WP's advantage over BCC decreased with increasing height (26.7 %–16.7 %), while Primitive showed an opposite trend, with its advantage increasing from 18.1 % to 21.4 %. At a model height of 15 mm, I-WP was the most efficient structure, whereas Primitive outperformed at 30 mm and 45 mm. These findings enhanced LHTES efficiency, supporting their application in solar thermal storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用TPMS提高太阳能储热系统的效率:孔隙尺度模拟
基于相变材料(PCMs)的潜热热能储存(LHTES)系统的热效率仍然是其在太阳能和工业过程中广泛应用的一大障碍。在 PCM 中加入三重周期性最小表面(TPMS)晶格的 LHTES 系统表现出卓越的储热性能。然而,模型高度这一关键结构参数对 LHTES 系统蓄热行为的影响尚未得到定量分析,从而阻碍了进一步优化。本研究使用简化的中心柱模型来评估两种 TPMS 结构(I-WP 和 Primitive)在三种高度(15、30 和 45 毫米)下的蓄热行为,并将它们与传统的金属泡沫(BCC)进行比较。结果表明,随着模型高度的增加,热传导明显减少,其中 I-WP 的减少幅度最大(从 15 毫米到 45 毫米减少了 49.4%),其次是 Primitive(46.2%)和 BCC(45.7%)。原始模型和 BCC 中的对流传热最初随模型高度的增加而增加,然后随模型高度的增加而减少,而在 I-WP 中,模型高度的影响不太明显。此外,研究还定量分析了两种 TPMS 结构相对于 BCC 的性能优势如何随模型高度而变化。与 BCC 相比,I-WP 的优势随着高度的增加而减小(26.7%-16.7%),而 Primitive 则呈现出相反的趋势,其优势从 18.1% 增加到 21.4%。在模型高度为 15 毫米时,I-WP 是效率最高的结构,而在 30 毫米和 45 毫米时,Primitive 的表现更胜一筹。这些发现提高了 LHTES 的效率,支持其在太阳能热存储中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Comprehensive VIPV energy yield and MPPT evaluation under realistic dynamic shading in urban environments Directionally structured oxalic acid dihydrate-glutaric acid/expanded graphite-graphite sheet composites with ultrahigh thermal conductivity for solar thermal storage Machine learning based prognostic analysis of a hybrid solar still coupled with evacuated tube collector and stearic acid: A comprehensive 4-E assessment Ultra-narrow strip-shaped silicon solar cells for semi-transparent PV modules: Interplay among cut edges, cell structure, strip dimensions, and partial edge passivation Corrosion behavior of laser-cladding nickel-based coating in high-temperature molten chloride salts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1