Iain de Jonge-Anderson , Hariharan Ramachandran , Ana Widyanita , Andreas Busch , Florian Doster , Uisdean Nicholson
{"title":"Regional screening of saline aquifers in the Malay Basin for CO2 storage","authors":"Iain de Jonge-Anderson , Hariharan Ramachandran , Ana Widyanita , Andreas Busch , Florian Doster , Uisdean Nicholson","doi":"10.1016/j.ijggc.2025.104347","DOIUrl":null,"url":null,"abstract":"<div><div>The Malay Basin has received significant attention for geological carbon dioxide storage (GCS), but there are no published studies addressing the selection of appropriate deep saline aquifers. This study closes this gap. We process spatial data and use geological modelling and cluster analysis to identify optimal areas for GCS, considering various subsurface characteristics such as temperature, pressure, porosity and thermophysical CO<sub>2</sub> properties. It is found that the basin contains numerous Cenozoic aquifers suitable for GCS including locally thick, but low net-to-gross (NTG), stacked formations. Pliocene aquifers are too shallow to offer storage for CO<sub>2</sub> in large quantities, but upper Miocene aquifers located in the northwest of the basin contain promising intervals with significant porosities and conditions favouring denser CO<sub>2</sub>. Middle Miocene aquifers, while low NTG, are thick, and optimally located around the margins of the basin. They also have significant storage capacity and could be developed as a stacked GCS site. Lower Miocene aquifers are higher NTG, but deeply buried across many areas of the basin, yet the oldest aquifer evaluated still holds substantial storage capacity, where subject to minor burial at the margins of the basin. Overall, this study provides a novel first assessment of aquifer GCS potential in the Malay Basin, while also contributing to wider efforts to evolve screening workflows for other geological basins.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"143 ","pages":"Article 104347"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583625000453","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The Malay Basin has received significant attention for geological carbon dioxide storage (GCS), but there are no published studies addressing the selection of appropriate deep saline aquifers. This study closes this gap. We process spatial data and use geological modelling and cluster analysis to identify optimal areas for GCS, considering various subsurface characteristics such as temperature, pressure, porosity and thermophysical CO2 properties. It is found that the basin contains numerous Cenozoic aquifers suitable for GCS including locally thick, but low net-to-gross (NTG), stacked formations. Pliocene aquifers are too shallow to offer storage for CO2 in large quantities, but upper Miocene aquifers located in the northwest of the basin contain promising intervals with significant porosities and conditions favouring denser CO2. Middle Miocene aquifers, while low NTG, are thick, and optimally located around the margins of the basin. They also have significant storage capacity and could be developed as a stacked GCS site. Lower Miocene aquifers are higher NTG, but deeply buried across many areas of the basin, yet the oldest aquifer evaluated still holds substantial storage capacity, where subject to minor burial at the margins of the basin. Overall, this study provides a novel first assessment of aquifer GCS potential in the Malay Basin, while also contributing to wider efforts to evolve screening workflows for other geological basins.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.