SARS-CoV-2 Nsp13 helicase modulates miR-146a-mediated signaling pathways

IF 2.8 3区 医学 Q3 VIROLOGY Virology Pub Date : 2025-03-07 DOI:10.1016/j.virol.2025.110493
Eryn Lundrigan , Spencer Uguccioni , Christine Hum , Nadine Ahmed , John Paul Pezacki
{"title":"SARS-CoV-2 Nsp13 helicase modulates miR-146a-mediated signaling pathways","authors":"Eryn Lundrigan ,&nbsp;Spencer Uguccioni ,&nbsp;Christine Hum ,&nbsp;Nadine Ahmed ,&nbsp;John Paul Pezacki","doi":"10.1016/j.virol.2025.110493","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the successful development of vaccines and antiviral therapeutics against SARS-CoV-2, its tendency to mutate rapidly has emphasized the need for continued research to better understand this virus’s mechanism of pathogenesis and interactions with host signaling pathways. In this study, we sought to explore how the SARS-CoV-2 non-structural protein 13 (Nsp13) helicase, a highly conserved coronavirus protein that is essential for viral replication, influences host biological and cellular processes. Global transcriptomic analyses of Nsp13-transfected A549 cells identified changes in pathways involved in post-transcriptional gene silencing and translational repression by RNA, such as microRNAs (miRNAs). Upon further bioinformatic analyses, we identified miR-146a-mediated signaling pathways to be of interest as this miRNA has been previously linked to the regulation of host inflammation and innate immune responses. We found that miR-146a was induced in Nsp13-transfected cells and observed a corresponding decrease in the gene expression of two miR-146a targets, TRAF6 and IRAK1, which are important upstream regulators of NF-kB activation and IFN signaling. These results suggest that Nsp13-induced miR-146a signaling cascades, namely NF-kB activation and SMAD4 signaling, may provide valuable insight for the development of novel antiviral therapeutics against COVID-19 variants.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"606 ","pages":"Article 110493"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225001059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the successful development of vaccines and antiviral therapeutics against SARS-CoV-2, its tendency to mutate rapidly has emphasized the need for continued research to better understand this virus’s mechanism of pathogenesis and interactions with host signaling pathways. In this study, we sought to explore how the SARS-CoV-2 non-structural protein 13 (Nsp13) helicase, a highly conserved coronavirus protein that is essential for viral replication, influences host biological and cellular processes. Global transcriptomic analyses of Nsp13-transfected A549 cells identified changes in pathways involved in post-transcriptional gene silencing and translational repression by RNA, such as microRNAs (miRNAs). Upon further bioinformatic analyses, we identified miR-146a-mediated signaling pathways to be of interest as this miRNA has been previously linked to the regulation of host inflammation and innate immune responses. We found that miR-146a was induced in Nsp13-transfected cells and observed a corresponding decrease in the gene expression of two miR-146a targets, TRAF6 and IRAK1, which are important upstream regulators of NF-kB activation and IFN signaling. These results suggest that Nsp13-induced miR-146a signaling cascades, namely NF-kB activation and SMAD4 signaling, may provide valuable insight for the development of novel antiviral therapeutics against COVID-19 variants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Virology
Virology 医学-病毒学
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
50 days
期刊介绍: Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.
期刊最新文献
Editorial Board Comprehensive single-cell profiling of T and B cell subsets in mice reveals impacts on memory immune responses in FMDV infection Invisible vectors, visible impact: The role of eriophyoid mites in emaravirus disease dynamics Critical role of ferroptosis in viral infection and host responses SARS-CoV-2 Nsp13 helicase modulates miR-146a-mediated signaling pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1