Strain partitioning and fault interaction during the 2023 Mw 6.8 Al-Haouz earthquake, Western High Atlas, Morocco

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Structural Geology Pub Date : 2025-03-06 DOI:10.1016/j.jsg.2025.105394
F. Carboni , M. Occhipinti , R. Lanari , F. Medina , T.-E. Cherkaoui , R. Gaspari , C. Faccenna , C. Chiarabba , M. Porreca
{"title":"Strain partitioning and fault interaction during the 2023 Mw 6.8 Al-Haouz earthquake, Western High Atlas, Morocco","authors":"F. Carboni ,&nbsp;M. Occhipinti ,&nbsp;R. Lanari ,&nbsp;F. Medina ,&nbsp;T.-E. Cherkaoui ,&nbsp;R. Gaspari ,&nbsp;C. Faccenna ,&nbsp;C. Chiarabba ,&nbsp;M. Porreca","doi":"10.1016/j.jsg.2025.105394","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs a multidisciplinary approach to identify the seismogenic fault responsible for the Mw 6.8 Al Haouz earthquake of September 8, 2023, in the Western High Atlas, Morocco. In addition, considering the oblique slip dynamics and strain partitioning characteristic of the region, the study investigates potential interactions between fault systems at depth. Our new relocation of the mainshock confirms the depth of the mainshock at ca. 28 km, while our relocated aftershocks reveal clusters concentrated near the Tizi n’Test fault (TnTf) and aligned patterns consistent with fault-controlled seismicity. Focal mechanisms of the mainshock indicate a compressive event involving two nodal planes: a high-angle NW-dipping plane and a low-angle SW-dipping plane. DInSAR analysis generated displacement maps for vertical and horizontal (E-W) components, revealing an asymmetric SW-verging uplift bounded, in the south, by the NW-dipping Tizi n’Test fault (TnTf). The Triangular Elastic Dislocation (TDE) method is conducted to simulate complex faults geometries using geological data and focal mechanism solution.</div><div>The NW-dipping TnTf shows a better fit with the observed deformation compared to the SW-dipping Jebilet Thrust (JTt), which contributed with a minor role. Coulomb stress changes calculated from the TDE model correlates with aftershocks distribution, further supporting the TnTf as the causative fault, with a partial influence of the JTt.</div><div>Our findings emphasize the value of integrating geodetic observations with advanced modelling to enhance the understanding of the seismotectonic framework, offering a refined reconstruction of the Western High Atlas's deformation processes during the 2023 Al Haouz earthquake.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"195 ","pages":"Article 105394"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814125000586","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs a multidisciplinary approach to identify the seismogenic fault responsible for the Mw 6.8 Al Haouz earthquake of September 8, 2023, in the Western High Atlas, Morocco. In addition, considering the oblique slip dynamics and strain partitioning characteristic of the region, the study investigates potential interactions between fault systems at depth. Our new relocation of the mainshock confirms the depth of the mainshock at ca. 28 km, while our relocated aftershocks reveal clusters concentrated near the Tizi n’Test fault (TnTf) and aligned patterns consistent with fault-controlled seismicity. Focal mechanisms of the mainshock indicate a compressive event involving two nodal planes: a high-angle NW-dipping plane and a low-angle SW-dipping plane. DInSAR analysis generated displacement maps for vertical and horizontal (E-W) components, revealing an asymmetric SW-verging uplift bounded, in the south, by the NW-dipping Tizi n’Test fault (TnTf). The Triangular Elastic Dislocation (TDE) method is conducted to simulate complex faults geometries using geological data and focal mechanism solution.
The NW-dipping TnTf shows a better fit with the observed deformation compared to the SW-dipping Jebilet Thrust (JTt), which contributed with a minor role. Coulomb stress changes calculated from the TDE model correlates with aftershocks distribution, further supporting the TnTf as the causative fault, with a partial influence of the JTt.
Our findings emphasize the value of integrating geodetic observations with advanced modelling to enhance the understanding of the seismotectonic framework, offering a refined reconstruction of the Western High Atlas's deformation processes during the 2023 Al Haouz earthquake.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
期刊最新文献
Editorial Board Correlation between cumulative horizontal extension and strike-slip displacement in releasing bends: Discrete element analysis Distributions of throws, widths and scarp slopes on normal faults and their relations to fault growth: Insights from Auto_Throw code Editorial Board Strain partitioning and fault interaction during the 2023 Mw 6.8 Al-Haouz earthquake, Western High Atlas, Morocco
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1