A 7T MRI-Guided Learning Method for Automatic Hippocampal Subfield Segmentation on Routine 3T MRI

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-03-06 DOI:10.1109/ACCESS.2025.3548726
Linjin Wang;Jiangtao He;Guohong Geng;Lisha Zhong;Xinwei Li
{"title":"A 7T MRI-Guided Learning Method for Automatic Hippocampal Subfield Segmentation on Routine 3T MRI","authors":"Linjin Wang;Jiangtao He;Guohong Geng;Lisha Zhong;Xinwei Li","doi":"10.1109/ACCESS.2025.3548726","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of hippocampal subfields in MRI scans is crucial for aiding in the diagnosis of various neurological diseases and for monitoring brain states. However, due to limitations of imaging systems and the inherent complexity of hippocampal subfield delineation, achieving accurate hippocampal subfield delineation on routine 3T MRI is highly challenging. In this paper, we propose a novel Guided Learning Network (GLNet) that leverages 7T MRI to enhance the accuracy of hippocampal subfield segmentation on routine 3T MRI. GLNet aligns and learns shared features between 3T MRI and 7T MRI through a modeling approach based on domain-specific and domain-shared feature learning, leveraging the features of 7T MRI to guide learning for 3T MRI features. In this process, we also introduce a Multi-Feature Attention Fusion (MFAF) block to integrate both specific and shared features from each modality. By leveraging an attention mechanism, MFAF adaptively focuses on relevant information between the specific and shared features within the same modality, thereby reducing the impact of irrelevant information. Additionally, we further proposed an Online Knowledge Distillation (OLKD) method to distill detailed knowledge from 7T MRI into 3T MRI, enhancing the feature representation capability and robustness of the 3T MRI segmentation model. Our method was validated on PAIRED 3T-7T HIPPOCAMPAL SUBFIELD DATASET, and the experimental results demonstrate that GLNet outperforms other competitive methods.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"42428-42440"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10915623","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10915623/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of hippocampal subfields in MRI scans is crucial for aiding in the diagnosis of various neurological diseases and for monitoring brain states. However, due to limitations of imaging systems and the inherent complexity of hippocampal subfield delineation, achieving accurate hippocampal subfield delineation on routine 3T MRI is highly challenging. In this paper, we propose a novel Guided Learning Network (GLNet) that leverages 7T MRI to enhance the accuracy of hippocampal subfield segmentation on routine 3T MRI. GLNet aligns and learns shared features between 3T MRI and 7T MRI through a modeling approach based on domain-specific and domain-shared feature learning, leveraging the features of 7T MRI to guide learning for 3T MRI features. In this process, we also introduce a Multi-Feature Attention Fusion (MFAF) block to integrate both specific and shared features from each modality. By leveraging an attention mechanism, MFAF adaptively focuses on relevant information between the specific and shared features within the same modality, thereby reducing the impact of irrelevant information. Additionally, we further proposed an Online Knowledge Distillation (OLKD) method to distill detailed knowledge from 7T MRI into 3T MRI, enhancing the feature representation capability and robustness of the 3T MRI segmentation model. Our method was validated on PAIRED 3T-7T HIPPOCAMPAL SUBFIELD DATASET, and the experimental results demonstrate that GLNet outperforms other competitive methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Corrections to “A Visual Prompt-Based Mobile Learning System for Improved Algebraic Understanding in Students With Learning Disabilities” Corrections to “Design of Compact Dual-Band Eighth-Mode SIW Antenna for On-Body ISM Band Application” A 7T MRI-Guided Learning Method for Automatic Hippocampal Subfield Segmentation on Routine 3T MRI Seasonal Analysis of Polarimetric Responses Utilizing Ku-Band GB-SAR Time Series Data Synchrony Vision: Capturing Body Motion Synchrony Through Phase Difference Using the Kinect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1