Rapid Multi-Objective Antenna Synthesis via Deep Neural Network Surrogate-Driven Evolutionary Optimization

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2025-02-20 DOI:10.1109/JMMCT.2025.3544270
Praveen Singh;Soumyashree S. Panda;Jogesh C. Dash;Bright Riscob;Surya K. Pathak;Ravi S. Hegde
{"title":"Rapid Multi-Objective Antenna Synthesis via Deep Neural Network Surrogate-Driven Evolutionary Optimization","authors":"Praveen Singh;Soumyashree S. Panda;Jogesh C. Dash;Bright Riscob;Surya K. Pathak;Ravi S. Hegde","doi":"10.1109/JMMCT.2025.3544270","DOIUrl":null,"url":null,"abstract":"Antenna synthesis is becoming increasingly challenging with tight requirements for C-SWAP (cost, size, weight and power) reduction while maintaining stringent electromagnetic performance specifications. While machine learning approaches are increasingly being explored for antenna synthesis, they are still not capable of handling large shape sets with diverse responses. We propose a branched deep convolutional neural network architecture that can serve as a drop-in replacement for a full-wave simulator (it can predict the full spectral response of reflection co-efficient, input impedance and radiation pattern). We show the utility of such models in surrogate-assisted evolutionary optimization for antenna synthesis with arbitrary specification of targeted response. Specifically, we consider the large shape set defined by the set of 16-vertexes polygonal patch antennas and consider antenna synthesis by specifying independent constraints on return loss, radiation pattern and gain. In contrast to online surrogates, our approach is an offline surrogate that is objective-agnostic; trained once, it can be used over multiple optimizations whereby the model training costs become amortized across multiple synthesis requests. Our approach outperforms evolutionary optimizations relying on full-wave solver-based fitness estimation. Specifically, we report the design, fabrication and experimental characterization of three polygon-shaped patch antennas, each fulfilling different objectives (narrow band, dual-band & wide-band). The reported methodology enables rapid synthesis (in seconds), produces verifiable sound designs and is promising for furthering data-driven design methodologies for electromagnetic wave device synthesis.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"151-159"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10897805/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Antenna synthesis is becoming increasingly challenging with tight requirements for C-SWAP (cost, size, weight and power) reduction while maintaining stringent electromagnetic performance specifications. While machine learning approaches are increasingly being explored for antenna synthesis, they are still not capable of handling large shape sets with diverse responses. We propose a branched deep convolutional neural network architecture that can serve as a drop-in replacement for a full-wave simulator (it can predict the full spectral response of reflection co-efficient, input impedance and radiation pattern). We show the utility of such models in surrogate-assisted evolutionary optimization for antenna synthesis with arbitrary specification of targeted response. Specifically, we consider the large shape set defined by the set of 16-vertexes polygonal patch antennas and consider antenna synthesis by specifying independent constraints on return loss, radiation pattern and gain. In contrast to online surrogates, our approach is an offline surrogate that is objective-agnostic; trained once, it can be used over multiple optimizations whereby the model training costs become amortized across multiple synthesis requests. Our approach outperforms evolutionary optimizations relying on full-wave solver-based fitness estimation. Specifically, we report the design, fabrication and experimental characterization of three polygon-shaped patch antennas, each fulfilling different objectives (narrow band, dual-band & wide-band). The reported methodology enables rapid synthesis (in seconds), produces verifiable sound designs and is promising for furthering data-driven design methodologies for electromagnetic wave device synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度神经网络替代驱动的进化优化实现快速多目标天线合成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Rapid Multi-Objective Antenna Synthesis via Deep Neural Network Surrogate-Driven Evolutionary Optimization Self Surface Charge Method for Static Field Simulation Compatible With Non-Conformal Meshes Efficient Calculation of Magnetic Force Between Two Current-Carrying Filaments of Circular and Closed-Curve of Arbitrary Shape via Segmentation Approach An Efficient Surface-Integral-Equation Based Nyström Method With an Over-Determined Testing Scheme for Broadband Grating Scattering Modeling 2024 Index IEEE Journal on Multiscale and Multiphysics Computational Techniques Vol. 9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1