A gap-designed photo-reactor for high-performance photothermal methane reforming†

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2025-02-13 DOI:10.1039/D4SE01830C
Hamada A. El-Naggar, Hisao Yoshida and Akira Yamamoto
{"title":"A gap-designed photo-reactor for high-performance photothermal methane reforming†","authors":"Hamada A. El-Naggar, Hisao Yoshida and Akira Yamamoto","doi":"10.1039/D4SE01830C","DOIUrl":null,"url":null,"abstract":"<p >Photothermal catalysis has garnered significant attention as a potential solution to address energy scarcity. In photothermal catalysis, light irradiation directly heats the catalyst bed, inducing a localized temperature gradient. However, in methane reforming reactions such as dry reforming, the undesired reverse reaction typically proceeds in the lower temperature zone of the catalyst bed, which reduces the overall efficiency. To address this issue, we developed a novel flow-type photo-reactor composed of a quartz tube and a quartz filler welded within the tube. The narrow catalyst-filled gap was used for catalytic reaction that minimizes the temperature gradient under light irradiation. The developed reactor, termed the gap reactor, demonstrated excellent catalytic performance in photothermal dry reforming of methane (PT-DRM), achieving ∼70–80% conversion of CH<small><sub>4</sub></small> and CO<small><sub>2</sub></small> over 100 hours using a SiO<small><sub>2</sub></small>-encapsulated Co–Ni alloy catalyst previously developed by our group. Compared to the conventional quartz tube reactor with the same cross-sectional area for light absorption, the gap reactor significantly enhanced both conversion and stability. Furthermore, integrating the gap reactor with steam addition to the reaction feed successfully suppressed coke formation to only 0.6 wt% after approximately 50 hours of reaction. This study highlights the benefits of the gap reactor design in high-temperature catalytic applications up to 1000 °C.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 6","pages":" 1596-1604"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01830c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01830c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal catalysis has garnered significant attention as a potential solution to address energy scarcity. In photothermal catalysis, light irradiation directly heats the catalyst bed, inducing a localized temperature gradient. However, in methane reforming reactions such as dry reforming, the undesired reverse reaction typically proceeds in the lower temperature zone of the catalyst bed, which reduces the overall efficiency. To address this issue, we developed a novel flow-type photo-reactor composed of a quartz tube and a quartz filler welded within the tube. The narrow catalyst-filled gap was used for catalytic reaction that minimizes the temperature gradient under light irradiation. The developed reactor, termed the gap reactor, demonstrated excellent catalytic performance in photothermal dry reforming of methane (PT-DRM), achieving ∼70–80% conversion of CH4 and CO2 over 100 hours using a SiO2-encapsulated Co–Ni alloy catalyst previously developed by our group. Compared to the conventional quartz tube reactor with the same cross-sectional area for light absorption, the gap reactor significantly enhanced both conversion and stability. Furthermore, integrating the gap reactor with steam addition to the reaction feed successfully suppressed coke formation to only 0.6 wt% after approximately 50 hours of reaction. This study highlights the benefits of the gap reactor design in high-temperature catalytic applications up to 1000 °C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能光热甲烷转化的间隙设计光反应器†。
光热催化作为解决能源短缺的一种潜在解决方案已经引起了人们的极大关注。在光热催化中,光照射直接加热催化剂床层,引起局部温度梯度。然而,在甲烷重整反应中,如干重整,通常在催化剂床层的较低温度区域进行不希望的逆反应,这降低了整体效率。为了解决这一问题,我们开发了一种新型的流动型光反应器,该反应器由石英管和管内焊接的石英填料组成。利用狭窄的催化剂填充间隙进行催化反应,使光照射下的温度梯度最小化。开发的反应器被称为间隙反应器,在甲烷光热干重整(PT-DRM)中表现出优异的催化性能,使用我们团队先前开发的sio2封装Co-Ni合金催化剂,在100小时内实现了~ 70-80%的CH4和CO2转化率。与具有相同光吸收截面积的传统石英管反应器相比,间隙反应器的转化率和稳定性都得到了显著提高。此外,将间隙反应器与蒸汽添加到反应进料中,在大约50小时的反应后,成功地将焦炭生成率降至0.6 wt%。这项研究强调了间隙反应器设计在高达1000°C的高温催化应用中的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
A new chapter for Sustainable Energy & Fuels Synergistic stabilization of lead halide perovskites by univalent cations under electric field stress Electrolyte additives in Li-ion batteries: from mechanisms to application Optimizing π-conjugated system of spiro-based HTMs; structures and concept towards boosting efficiency of PSCs Optimising supercritical water gasification of biomass: exploring heating strategy through a quantitative kinetic modelling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1