{"title":"An Advanced Hydrogel-based Facial Mask for Skin Quality Testing","authors":"Yan-Fang Meng, Yu-Liao Dong, Man-Li Na, Lin Xu","doi":"10.1007/s10118-025-3287-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the event of the ever-increasing growth of the beauty industry and the burgeoning market for facial masks, high-performance and high-safety mask products have emerged. Among these, light-cured collagen peptide-based hydrogels, which are non-toxic, photocurable natural materials, exhibit significant potential for use in facial masks. We developed a novel collagen peptide-lithium chloride hydrogel-based facial mask. Light-cured collagen peptide hydrogel is a non-toxic, light-activated natural material that holds considerable promise for application in facial masks. Nonetheless, there is a significant lack of effective methodologies for real-time assessment of skin quality currently available in the market. To address this deficiency, we have developed an innovative collagen peptide-lithium chloride hydrogel mask, which is characterized by exceptional transparency (98% within the visible spectrum of 400–800 nm), commendable tensile properties (tensile strength of 428.6±2.1 kPa, with a tensile strength increase of 123.9%), substantial water retention capacity (61%), and favorable antimicrobial efficacy (89%). The incorporation of lithium chloride enhances ionic conduction at the interface between the human body and hydrogel, thereby enabling quantitative evaluation of skin quality through impedance analysis. Our collagen peptide-lithium chloride hydrogel facial mask demonstrated effectiveness in distinguishing various skin types, including D<sup>+</sup> (severely dry), D (mildly to moderately dry), N (moderate), O (mildly to moderately oily), and O<sup>+</sup> (severely oily). This study presents significant opportunities for the advancement of hydrogel masks and provides a new application platform for polymer hydrogels.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 3","pages":"495 - 508"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3287-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the event of the ever-increasing growth of the beauty industry and the burgeoning market for facial masks, high-performance and high-safety mask products have emerged. Among these, light-cured collagen peptide-based hydrogels, which are non-toxic, photocurable natural materials, exhibit significant potential for use in facial masks. We developed a novel collagen peptide-lithium chloride hydrogel-based facial mask. Light-cured collagen peptide hydrogel is a non-toxic, light-activated natural material that holds considerable promise for application in facial masks. Nonetheless, there is a significant lack of effective methodologies for real-time assessment of skin quality currently available in the market. To address this deficiency, we have developed an innovative collagen peptide-lithium chloride hydrogel mask, which is characterized by exceptional transparency (98% within the visible spectrum of 400–800 nm), commendable tensile properties (tensile strength of 428.6±2.1 kPa, with a tensile strength increase of 123.9%), substantial water retention capacity (61%), and favorable antimicrobial efficacy (89%). The incorporation of lithium chloride enhances ionic conduction at the interface between the human body and hydrogel, thereby enabling quantitative evaluation of skin quality through impedance analysis. Our collagen peptide-lithium chloride hydrogel facial mask demonstrated effectiveness in distinguishing various skin types, including D+ (severely dry), D (mildly to moderately dry), N (moderate), O (mildly to moderately oily), and O+ (severely oily). This study presents significant opportunities for the advancement of hydrogel masks and provides a new application platform for polymer hydrogels.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.