Pavla Hrušková, Zdeněk Dostál, Oldřich Vlach, Petr Vodstrčil
{"title":"On multipoint constraints in FETI methods","authors":"Pavla Hrušková, Zdeněk Dostál, Oldřich Vlach, Petr Vodstrčil","doi":"10.21136/AM.2025.0114-24","DOIUrl":null,"url":null,"abstract":"<div><p>FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners’ variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"70 1","pages":"47 - 64"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2025.0114-24.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2025.0114-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners’ variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI.
期刊介绍:
Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering.
The main topics covered include:
- Mechanics of Solids;
- Fluid Mechanics;
- Electrical Engineering;
- Solutions of Differential and Integral Equations;
- Mathematical Physics;
- Optimization;
- Probability
Mathematical Statistics.
The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.