Robust Multicast Beamforming for Jittering UAV: A Secrecy Energy Efficiency Perspective

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2025-03-11 DOI:10.1049/cmu2.70022
Jian Ouyang, Jing Ding, Chengyang Liu, Xiaoyu Liu, Min Lin
{"title":"Robust Multicast Beamforming for Jittering UAV: A Secrecy Energy Efficiency Perspective","authors":"Jian Ouyang,&nbsp;Jing Ding,&nbsp;Chengyang Liu,&nbsp;Xiaoyu Liu,&nbsp;Min Lin","doi":"10.1049/cmu2.70022","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate an unmanned aerial vehicle (UAV) enabled secure multicast communication system, where a UAV serves multiple legitimate ground users in the presence of multiple coordinated eavesdroppers. Taking into account the inherent jittering characteristics of UAVs caused by the airflow, we aim to maximise the worst-case secrecy energy efficiency (SEE) under a constrained UAV transmission power budget. The formulated optimization problem is inherently non-convex and challenging to solve due to the combined effects of jittering uncertainties and the max–min fractional structure of the SEE metric. To address these challenges, we first simplify the original SEE maximization problem by introducing auxiliary variables. Next, considering the impact of jittering on the antenna array response, we develop a novel second-order Taylor series expansion-based approach to approximate beamforming gains as quadratic functions of the angle-of-departure errors, which can be subsequently transformed into deterministic convex constraints by using <i>S</i>-Procedure. Based on these theoretical results, we design an iterative algorithm that combines the penalty function method with the successive convex approximation to efficiently obtain a suboptimal solution. Finally, the simulation results demonstrate the effectiveness and superiority of the proposed scheme compared to several benchmark schemes, highlighting its potential for practical implementation in UAV-enabled secure multicast communication systems.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate an unmanned aerial vehicle (UAV) enabled secure multicast communication system, where a UAV serves multiple legitimate ground users in the presence of multiple coordinated eavesdroppers. Taking into account the inherent jittering characteristics of UAVs caused by the airflow, we aim to maximise the worst-case secrecy energy efficiency (SEE) under a constrained UAV transmission power budget. The formulated optimization problem is inherently non-convex and challenging to solve due to the combined effects of jittering uncertainties and the max–min fractional structure of the SEE metric. To address these challenges, we first simplify the original SEE maximization problem by introducing auxiliary variables. Next, considering the impact of jittering on the antenna array response, we develop a novel second-order Taylor series expansion-based approach to approximate beamforming gains as quadratic functions of the angle-of-departure errors, which can be subsequently transformed into deterministic convex constraints by using S-Procedure. Based on these theoretical results, we design an iterative algorithm that combines the penalty function method with the successive convex approximation to efficiently obtain a suboptimal solution. Finally, the simulation results demonstrate the effectiveness and superiority of the proposed scheme compared to several benchmark schemes, highlighting its potential for practical implementation in UAV-enabled secure multicast communication systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
Performance Analysis of RIS-Assisted Relay Systems Robust Multicast Beamforming for Jittering UAV: A Secrecy Energy Efficiency Perspective Privacy preservation-driven communication-computing collaboration for multi-mode heterogeneous IoT network management Performance Analysis for Reconfigurable Intelligent Surface-Aided Cache-Enabled Wireless Networks A Novel FBMC/QAM Scheme to Eliminate the Error Floor in Multipath Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1