Survival, Movement, and Lifespan: Decoding the Roles of Patched-Related in Drosophila melanogaster

IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of Insect Biochemistry and Physiology Pub Date : 2025-03-11 DOI:10.1002/arch.70048
Cristina Parada, Daniel Prieto
{"title":"Survival, Movement, and Lifespan: Decoding the Roles of Patched-Related in Drosophila melanogaster","authors":"Cristina Parada,&nbsp;Daniel Prieto","doi":"10.1002/arch.70048","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Patched-related (Ptr) is a transmembrane protein implicated in developmental processes in <i>Drosophila melanogaster</i>, yet its precise role remains incompletely understood. Here, we use <i>Ptr</i><sup><i>23c</i></sup> null mutants to investigate the functional significance of Ptr through the entire life cycle monitoring survival during embryonic, larval, pupal and adult development, and studying larval locomotion and muscle structure. We report that <i>Ptr</i><sup><i>23c</i></sup> larvae displayed impaired hatching, indicative of defective embryonic development. Moreover, mutant larvae exhibited reduced mobility and lethargy, suggesting a potential involvement of Ptr in neuromuscular function. Morphological analysis of somatic muscles in mutant larvae revealed enlarged cell nuclei. Despite high preadult mortality, a subset of <i>Ptr</i><sup><i>23c</i></sup> mutant adults display an unexpected extension in lifespan compared to controls, implicating Ptr in the regulation of longevity. Our findings provide critical insights into the multifaceted role of Ptr in <i>Drosophila</i> development, highlighting its contributions to post-embryonic survival, neuromuscular function, and lifespan regulation. This study underscores the significance of exploring broader genetic networks to unravel the complexities of developmental processes.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.70048","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Patched-related (Ptr) is a transmembrane protein implicated in developmental processes in Drosophila melanogaster, yet its precise role remains incompletely understood. Here, we use Ptr23c null mutants to investigate the functional significance of Ptr through the entire life cycle monitoring survival during embryonic, larval, pupal and adult development, and studying larval locomotion and muscle structure. We report that Ptr23c larvae displayed impaired hatching, indicative of defective embryonic development. Moreover, mutant larvae exhibited reduced mobility and lethargy, suggesting a potential involvement of Ptr in neuromuscular function. Morphological analysis of somatic muscles in mutant larvae revealed enlarged cell nuclei. Despite high preadult mortality, a subset of Ptr23c mutant adults display an unexpected extension in lifespan compared to controls, implicating Ptr in the regulation of longevity. Our findings provide critical insights into the multifaceted role of Ptr in Drosophila development, highlighting its contributions to post-embryonic survival, neuromuscular function, and lifespan regulation. This study underscores the significance of exploring broader genetic networks to unravel the complexities of developmental processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
115
审稿时长
12 months
期刊介绍: Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.
期刊最新文献
Drosophila as a Promising In Vivo Research Model for the Application and Development of Targeted Protein Inactivation Technologies Differential Processing of Sucrose and Invert Syrup in Honey Bees Issue Information CRISPR/Cas9 Mediated Editing of Bdtektin1 Gene Induces Sterility in Male Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae) Correction to “Microcystin-LR-Induced Changes in Growth Performance, Intestinal Microbiota, and Lipid Metabolism of Black Soldier Fly Larvae (Hermetia illucens)”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1