Fei Yu, Guanting Ye, Qing Jiang, Ka-Veng Yuen, Xun Chong, Qiang Jin
{"title":"Imaging-Based Instance Segmentation of Pavement Cracks Using an Improved YOLOv8 Network","authors":"Fei Yu, Guanting Ye, Qing Jiang, Ka-Veng Yuen, Xun Chong, Qiang Jin","doi":"10.1155/stc/1660649","DOIUrl":null,"url":null,"abstract":"<div>\n <p>An improved YOLOv8 model, YOLOv8-NETC, is proposed in this study for fine-grained crack recognition through instance segmentation. YOLOv8-NETC is designed and enhanced with four self-developed modules. First, ablation studies were conducted to assess the effectiveness of each module. The model’s accuracy and speed were evaluated based on parameters such as mean average precision (mAP50) and model weight (MW). The experimental results show significant improvements in accuracy, storage efficiency, and processing speed. Compared to the original network, YOLOv8-NETC achieved a 6.5% increase in mAP50, a 6.1% average reduction in MW and parameters, and an 8.5% improvement in FPS. Subsequently, YOLOv8-NETC was compared with other state-of-the-art models across three datasets, including the crack type dataset, crack trueness dataset, and the public Crack500 dataset. The experimental results demonstrate that the proposed model achieved the best recognition performance on all datasets. Furthermore, YOLOv8-NETC showed superior robustness against interference and computational efficiency compared to other benchmark models.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/1660649","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/1660649","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An improved YOLOv8 model, YOLOv8-NETC, is proposed in this study for fine-grained crack recognition through instance segmentation. YOLOv8-NETC is designed and enhanced with four self-developed modules. First, ablation studies were conducted to assess the effectiveness of each module. The model’s accuracy and speed were evaluated based on parameters such as mean average precision (mAP50) and model weight (MW). The experimental results show significant improvements in accuracy, storage efficiency, and processing speed. Compared to the original network, YOLOv8-NETC achieved a 6.5% increase in mAP50, a 6.1% average reduction in MW and parameters, and an 8.5% improvement in FPS. Subsequently, YOLOv8-NETC was compared with other state-of-the-art models across three datasets, including the crack type dataset, crack trueness dataset, and the public Crack500 dataset. The experimental results demonstrate that the proposed model achieved the best recognition performance on all datasets. Furthermore, YOLOv8-NETC showed superior robustness against interference and computational efficiency compared to other benchmark models.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.