Inhibition of Putative Ibrutinib Targets Promotes Atrial Fibrillation, Conduction Blocks, and Proarrhythmic Electrocardiogram Indices: A Mendelian Randomization Analysis

Hongxuan Xu, Bingxun Li, Pinchao Lv, Ying Chen, Yanyun Lin, An Zhang, Jing Zhao, Guoxiong Zhou, Lin Wu
{"title":"Inhibition of Putative Ibrutinib Targets Promotes Atrial Fibrillation, Conduction Blocks, and Proarrhythmic Electrocardiogram Indices: A Mendelian Randomization Analysis","authors":"Hongxuan Xu,&nbsp;Bingxun Li,&nbsp;Pinchao Lv,&nbsp;Ying Chen,&nbsp;Yanyun Lin,&nbsp;An Zhang,&nbsp;Jing Zhao,&nbsp;Guoxiong Zhou,&nbsp;Lin Wu","doi":"10.1002/cai2.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The mechanism by which ibrutinib, a Bruton's tyrosine kinase inhibitor, can elevate the risk of arrhythmias is not fully elucidated. In this study, we explored how inhibition of off-target kinases can contribute to this phenomenon.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We performed a Mendelian randomization analysis to examine the causal associations between genetically proxied inhibition of six putative ibrutinib drug targets (ErbB2/HER2, CSK, JAK3, TEC, BLK, and PLCG2) and the atrial fibrillation (AF) risk, proarrhythmic ECG indices, and cardiometabolic traits and diseases. Inverse-variance weighted random-effects models and Wald ratio were used to examine the associations between genetically proxied inhibition of these drug targets and the risk of outcomes. Colocalization analyses were employed to examine the robustness of the causally significant findings. ELISAs were used to measure ErbB2 levels in intracardiac plasma samples.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Genetically proxied ErbB2 inhibition was associated with an increased AF risk, higher P wave terminal force, and prolonged QTc interval. Patients with AF had significantly higher intracardiac ErbB2 levels compared with patients with paroxysmal supraventricular tachycardia. CSK inhibition prolonged the QRS duration, decreased the QTc interval, and was potentially linked to conduction blocks. PLCG2 inhibition led to decreased P wave terminal force, shorter QTc interval, and increased risk of left bundle branch block. BLK inhibition shortened the QTc interval and was also associated with atrioventricular block.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The off-target effects and downstream targets of ibrutinib, including CSK, PLCG2, ERBB2, TEC, and BLK, may lead to cardiac electrical homeostasis imbalances and lethal cardiovascular diseases. Using drugs that inhibit these targets should be given extra caution.</p>\n </section>\n </div>","PeriodicalId":100212,"journal":{"name":"Cancer Innovation","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cai2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Innovation","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cai2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The mechanism by which ibrutinib, a Bruton's tyrosine kinase inhibitor, can elevate the risk of arrhythmias is not fully elucidated. In this study, we explored how inhibition of off-target kinases can contribute to this phenomenon.

Methods

We performed a Mendelian randomization analysis to examine the causal associations between genetically proxied inhibition of six putative ibrutinib drug targets (ErbB2/HER2, CSK, JAK3, TEC, BLK, and PLCG2) and the atrial fibrillation (AF) risk, proarrhythmic ECG indices, and cardiometabolic traits and diseases. Inverse-variance weighted random-effects models and Wald ratio were used to examine the associations between genetically proxied inhibition of these drug targets and the risk of outcomes. Colocalization analyses were employed to examine the robustness of the causally significant findings. ELISAs were used to measure ErbB2 levels in intracardiac plasma samples.

Results

Genetically proxied ErbB2 inhibition was associated with an increased AF risk, higher P wave terminal force, and prolonged QTc interval. Patients with AF had significantly higher intracardiac ErbB2 levels compared with patients with paroxysmal supraventricular tachycardia. CSK inhibition prolonged the QRS duration, decreased the QTc interval, and was potentially linked to conduction blocks. PLCG2 inhibition led to decreased P wave terminal force, shorter QTc interval, and increased risk of left bundle branch block. BLK inhibition shortened the QTc interval and was also associated with atrioventricular block.

Conclusion

The off-target effects and downstream targets of ibrutinib, including CSK, PLCG2, ERBB2, TEC, and BLK, may lead to cardiac electrical homeostasis imbalances and lethal cardiovascular diseases. Using drugs that inhibit these targets should be given extra caution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Computed Tomography-Based Habitat Analysis for Prognostic Stratification in Colorectal Liver Metastases Inhibition of Putative Ibrutinib Targets Promotes Atrial Fibrillation, Conduction Blocks, and Proarrhythmic Electrocardiogram Indices: A Mendelian Randomization Analysis Immunological Effects of Proton Radiotherapy: New Opportunities and Challenges in Cancer Therapy The Efficacy and Safety of Pegylated Liposomal Doxorubicin-Based Neoadjuvant Chemotherapy in Children With Osteosarcoma: A Retrospective Real-World Study T-Cadherin in Biliary Tract Cancer Stroma, a Potent Pharmacological Target for Biliary Tract Carcinogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1