Ming Xu, Peeyush Yadav, Xin Liu, Kevin D Gillis, Timothy E Glass
{"title":"Fluorescent Sensor for the Visualization of Amino Acid Neurotransmitters in Neurons Based on an S<sub>N</sub>Ar Reaction.","authors":"Ming Xu, Peeyush Yadav, Xin Liu, Kevin D Gillis, Timothy E Glass","doi":"10.1021/acschemneuro.5c00107","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamate is an important excitatory neurotransmitter, while GABA is an inhibitory neurotransmitter. However, direct and accurate visualization of these important signaling agents by a chemical sensor is still very challenging. Here, a novel coumarin-based fluorescent sensor for the selective labeling and imaging of amino acids in neurons has been developed. This sensor system provides two binding sites for amino acids: an aldehyde group for the amine binding and a modified fluorobenzene for an unusual nucleophilic aromatic substitution (S<sub>N</sub>Ar) reaction of a carboxyl group. Spectroscopic studies reveal a large fluorescence enhancement upon reaction with glutamate. Compounds lacking both groups did not activate the sensor. A clear and efficient visualization of neurotransmitters in cultured hippocampus neurons was obtained by imaging studies.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00107","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glutamate is an important excitatory neurotransmitter, while GABA is an inhibitory neurotransmitter. However, direct and accurate visualization of these important signaling agents by a chemical sensor is still very challenging. Here, a novel coumarin-based fluorescent sensor for the selective labeling and imaging of amino acids in neurons has been developed. This sensor system provides two binding sites for amino acids: an aldehyde group for the amine binding and a modified fluorobenzene for an unusual nucleophilic aromatic substitution (SNAr) reaction of a carboxyl group. Spectroscopic studies reveal a large fluorescence enhancement upon reaction with glutamate. Compounds lacking both groups did not activate the sensor. A clear and efficient visualization of neurotransmitters in cultured hippocampus neurons was obtained by imaging studies.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research