The cooperation of Pd center and Lewis acid sites to achieve high selectivity towards kinetic carbonate product for oxidative carbonylation reaction.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - A European Journal Pub Date : 2025-03-11 DOI:10.1002/chem.202500295
Zi-Qun Zhang, Shu-Juan Lin, Yu-Ping Xu, Teng Zhang, Zhong-Ning Xu, Ming-Sheng Wang, Guo-Cong Guo
{"title":"The cooperation of Pd center and Lewis acid sites to achieve high selectivity towards kinetic carbonate product for oxidative carbonylation reaction.","authors":"Zi-Qun Zhang, Shu-Juan Lin, Yu-Ping Xu, Teng Zhang, Zhong-Ning Xu, Ming-Sheng Wang, Guo-Cong Guo","doi":"10.1002/chem.202500295","DOIUrl":null,"url":null,"abstract":"<p><p>Dimethyl carbonate and dimethyl oxalate are competitive products of the carbonylation reaction of methyl nitrite (MN) under Pd-based catalysts. The chemo-selectivity is influenced not just by the thermodynamic constraints of reaction conditions but also by the electronic structures of catalysts. Lewis acid sites are extensively employed to modulate the electronic structures of Pd active sites for kinetic carbonate production, but their precise role remains unclear. Herein, we employed a combination of reaction kinetic, in situ DRIFTS experiments and DFT calculation, unveiling the indispensable role of Lewis acid sites in activating MN and facilitating the transfer of *OCH3 species, which is the key to obtain the kinetic carbonate outcome. The molecular understanding reveals the cooperation of Pd center and Lewis acid sites in directing selectivity towards carbonate product, which enables the rational design of higher-performance catalysts.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202500295"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202500295","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dimethyl carbonate and dimethyl oxalate are competitive products of the carbonylation reaction of methyl nitrite (MN) under Pd-based catalysts. The chemo-selectivity is influenced not just by the thermodynamic constraints of reaction conditions but also by the electronic structures of catalysts. Lewis acid sites are extensively employed to modulate the electronic structures of Pd active sites for kinetic carbonate production, but their precise role remains unclear. Herein, we employed a combination of reaction kinetic, in situ DRIFTS experiments and DFT calculation, unveiling the indispensable role of Lewis acid sites in activating MN and facilitating the transfer of *OCH3 species, which is the key to obtain the kinetic carbonate outcome. The molecular understanding reveals the cooperation of Pd center and Lewis acid sites in directing selectivity towards carbonate product, which enables the rational design of higher-performance catalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
期刊最新文献
Cover Feature: Visible-Light-Switchable Molecular Glues for Reversible Control of Protein Function (Chem. Eur. J. 15/2025) Front Cover: Helical Supramolecular Polymers Formed via Head-to-Tail Host-Guest Complexation of Chiral Bisporphyrin Monomers with Trinitrofluorenone (Chem. Eur. J. 15/2025) Cover Feature: Intramolecular Redox-Driven Synthesis of Mono- and Diradical Iridium(III) Complexes: Insights into Molecular and Electronic Structure, Electrochemistry, and Spin-Communication (Chem. Eur. J. 15/2025) A Bivalent Iridium(III) Complex Toolkit for Mitochondrial DNA G-Quadruplex-Targeted Theranostics. Applications of COFs in Photocatalysis for Energy Production and Harmful Substance Degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1