DCE-MRI quantitative analysis and MRI-based radiomics for predicting the early efficacy of microwave ablation in lung cancers.

IF 3.5 2区 医学 Q2 ONCOLOGY Cancer Imaging Pub Date : 2025-03-10 DOI:10.1186/s40644-025-00851-7
Chen Yang, Fandong Zhu, Jing Yang, Min Wang, Shijun Zhang, Zhenhua Zhao
{"title":"DCE-MRI quantitative analysis and MRI-based radiomics for predicting the early efficacy of microwave ablation in lung cancers.","authors":"Chen Yang, Fandong Zhu, Jing Yang, Min Wang, Shijun Zhang, Zhenhua Zhao","doi":"10.1186/s40644-025-00851-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate the feasibility and value of dynamic contrast-enhanced MRI (DCE-MRI) quantitative analysis and MRI-based radiomics in predicting the efficacy of microwave ablation (MWA) in lung cancers (LCs).</p><p><strong>Methods: </strong>Forty-three patients with LCs who underwent DCE-MRI within 24 h of receiving MWA were enrolled in the study and divided into two groups according to the modified response evaluation criteria in solid tumors (m-RECIST) criteria: the effective treatment (complete response + partial response + stable disease, n = 28) and the ineffective treatment (progressive disease, n = 15). DCE-MRI datasets were processed by Omni. Kinetics software, using the extended tofts model (ETM) and exchange model (ECM) to yield pharmacokinetic parameters and their histogram features. Changes in quantitative perfusion parameters were compared between the two groups. Scientific research platform ( https://medresearch.shukun.net/ ) was used for radiomics analysis. A total of 1874 radiomic features were extracted for each tumor by manually segmentation of T1WI and Contrast-enhanced of T1WI (Ce-T1WI) fat inhibition sequence. The performances of radiomics models were evaluated by the receiver operating characteristic curve. Based on radiomics features, survival curves were generated by Kaplan-Meier survival analysis to evaluate patient outcomes. P < 0.05 was set for the significance threshold.</p><p><strong>Results: </strong>The V<sub>p</sub> value of ECM was significantly higher in the ineffective group compared to the effective group (p = 0.027). Additionally, the skewness, and kurtosis of V<sub>p</sub> (p = 0.020 and 0.013, respectively) derived from ETM and F<sub>p</sub> (p = 0.027 and 0.030, respectively) from ECM as well as the quantiles were higher in the ineffective group than in the effective group. Significant statistical differences were observed in the energy and entropy of V<sub>e</sub> (p = 0.044 and 0.025, respectively) and V<sub>p</sub> (p = 0.025 and 0.026, respectively) between the two groups. In the process of model construction, seven features from T1WI, five features from Ce-T1WI, and ten features from combined sequences were ultimately selected. The area under the curve (AUC) values for the T1WI model, Ce-T1WI model, and combined model were 0.910, 0.890, 0.965 in the training group, and 0.850, 0.700, 0.850 in the test group, respectively.</p><p><strong>Conclusions: </strong>DCE-MRI quantitative analysis and MRI-based radiomics may be helpful in assessing the early response to MWA in patients with LCs.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"26"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00851-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To evaluate the feasibility and value of dynamic contrast-enhanced MRI (DCE-MRI) quantitative analysis and MRI-based radiomics in predicting the efficacy of microwave ablation (MWA) in lung cancers (LCs).

Methods: Forty-three patients with LCs who underwent DCE-MRI within 24 h of receiving MWA were enrolled in the study and divided into two groups according to the modified response evaluation criteria in solid tumors (m-RECIST) criteria: the effective treatment (complete response + partial response + stable disease, n = 28) and the ineffective treatment (progressive disease, n = 15). DCE-MRI datasets were processed by Omni. Kinetics software, using the extended tofts model (ETM) and exchange model (ECM) to yield pharmacokinetic parameters and their histogram features. Changes in quantitative perfusion parameters were compared between the two groups. Scientific research platform ( https://medresearch.shukun.net/ ) was used for radiomics analysis. A total of 1874 radiomic features were extracted for each tumor by manually segmentation of T1WI and Contrast-enhanced of T1WI (Ce-T1WI) fat inhibition sequence. The performances of radiomics models were evaluated by the receiver operating characteristic curve. Based on radiomics features, survival curves were generated by Kaplan-Meier survival analysis to evaluate patient outcomes. P < 0.05 was set for the significance threshold.

Results: The Vp value of ECM was significantly higher in the ineffective group compared to the effective group (p = 0.027). Additionally, the skewness, and kurtosis of Vp (p = 0.020 and 0.013, respectively) derived from ETM and Fp (p = 0.027 and 0.030, respectively) from ECM as well as the quantiles were higher in the ineffective group than in the effective group. Significant statistical differences were observed in the energy and entropy of Ve (p = 0.044 and 0.025, respectively) and Vp (p = 0.025 and 0.026, respectively) between the two groups. In the process of model construction, seven features from T1WI, five features from Ce-T1WI, and ten features from combined sequences were ultimately selected. The area under the curve (AUC) values for the T1WI model, Ce-T1WI model, and combined model were 0.910, 0.890, 0.965 in the training group, and 0.850, 0.700, 0.850 in the test group, respectively.

Conclusions: DCE-MRI quantitative analysis and MRI-based radiomics may be helpful in assessing the early response to MWA in patients with LCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Imaging
Cancer Imaging ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology. The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include: Breast Imaging Chest Complications of treatment Ear, Nose & Throat Gastrointestinal Hepatobiliary & Pancreatic Imaging biomarkers Interventional Lymphoma Measurement of tumour response Molecular functional imaging Musculoskeletal Neuro oncology Nuclear Medicine Paediatric.
期刊最新文献
Innovative optimization of greater omentum imaging report and data system for enhanced risk stratification of omental lesions. A CT-based interpretable deep learning signature for predicting PD-L1 expression in bladder cancer: a two-center study. DCE-MRI quantitative analysis and MRI-based radiomics for predicting the early efficacy of microwave ablation in lung cancers. Preoperative multiclass classification of thymic mass lesions based on radiomics and machine learning. Imaging genomics of cancer: a bibliometric analysis and review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1