首页 > 最新文献

Cancer Imaging最新文献

英文 中文
Mammographic radiomics and breast density for predicting PD-L1 expression in breast cancer. 乳房x线摄影放射组学和乳腺密度预测PD-L1在乳腺癌中的表达。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-02-07 DOI: 10.1186/s40644-026-01001-3
Yi-Shan Zhao, Hao Li, Can-Can Zhao, Yu-Heng Wang, Ping Wang, Zong-Yu Xie, Yu Ji, Hong Lu
{"title":"Mammographic radiomics and breast density for predicting PD-L1 expression in breast cancer.","authors":"Yi-Shan Zhao, Hao Li, Can-Can Zhao, Yu-Heng Wang, Ping Wang, Zong-Yu Xie, Yu Ji, Hong Lu","doi":"10.1186/s40644-026-01001-3","DOIUrl":"https://doi.org/10.1186/s40644-026-01001-3","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of MMR status on preoperative CT-based lymph node overstaging in right-sided colon cancer: a retrospective analysis. MMR状态对右侧结肠癌术前ct淋巴结过度分期的影响:回顾性分析。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-02-05 DOI: 10.1186/s40644-026-00992-3
Zexian Chen, Yuting Zhang, Hao Chen, Yanyun Lin, Hui He, Bin Zhang, Yongle Chen
{"title":"Impact of MMR status on preoperative CT-based lymph node overstaging in right-sided colon cancer: a retrospective analysis.","authors":"Zexian Chen, Yuting Zhang, Hao Chen, Yanyun Lin, Hui He, Bin Zhang, Yongle Chen","doi":"10.1186/s40644-026-00992-3","DOIUrl":"10.1186/s40644-026-00992-3","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"26 1","pages":"22"},"PeriodicalIF":3.5,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12874889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating deep learning and radiomics for precise identification of luminal A/B breast cancer subtypes on dynamic contrast-enhanced MRI. 结合深度学习和放射组学,在动态增强MRI上精确识别腔内A/B乳腺癌亚型。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-02-03 DOI: 10.1186/s40644-026-00996-z
Jianfeng Shangguan, Elena Shchukina, Dimitar Monov, Svetlana Larina

Background: Accurate differentiation between luminal A and B subtypes of breast cancer is critical for selecting therapeutic strategies. However, current approaches rely predominantly on invasive biopsy and immunohistochemical (IHC) analysis. Therefore, the development of non-invasive imaging-based methods capable of reliably classifying tumor subtypes remains an urgent task.

Methods: To develop and validate a hybrid classification model combining radiomic and deep learning features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate between luminal A and B subtypes of invasive breast cancer. The study included 312 women from China, Russia and Bulgaria with confirmed luminal subtypes of breast cancer. All patients underwent standardized pre-treatment DCE-MRI, and subtypes were determined using IHC. Tumors were semi-automatically segmented, and radiomic features were extracted using PyRadiomics. Additionally, deep features were extracted from DCE-MRI using a 3D ResNet-50 convolutional neural network. Three models were constructed: a radiomics-based model, a deep learning-based model, and a hybrid model that integrated both approaches using a stacking ensemble method. Model performance was evaluated using AUC, sensitivity, specificity, and other metrics on a test dataset and an independent external validation cohort (n = 148). SHAP and Grad-CAM techniques were applied for model interpretability.

Results: The hybrid model significantly outperformed the individual approaches, achieving an AUC of 0.921, sensitivity of 88.6%, and specificity of 89.7% on the test dataset. Performance remained robust in the external validation cohort (AUC = 0.903). Statistical tests (DeLong and bootstrapping) confirmed the significance of these differences. The most important contributors were radiomic features related to shape and texture (e.g., entropy, sphericity) and high-level deep features. Visualizations highlighted clinically relevant model attention areas.

Conclusion: The proposed hybrid approach represents a clinically applicable, non-invasive method for classifying breast cancer subtypes, potentially complementing or partially replacing biopsy in selected cases. It enhances diagnostic accuracy while maintaining interpretability. Future work will focus on prospective validation and integration with genomic and clinical data within the framework of precision oncology.

背景:准确区分乳腺A和B亚型对选择治疗策略至关重要。然而,目前的方法主要依赖于侵入性活检和免疫组织化学(IHC)分析。因此,发展能够可靠地对肿瘤亚型进行分类的非侵入性影像学方法仍然是一项紧迫的任务。方法:建立并验证从动态对比增强磁共振成像(DCE-MRI)中提取的放射学和深度学习特征相结合的混合分类模型,以区分浸润性乳腺癌的腔内a和B亚型。该研究包括来自中国、俄罗斯和保加利亚的312名确诊为输卵管亚型乳腺癌的女性。所有患者均接受标准化的治疗前DCE-MRI检查,并采用免疫组化(IHC)确定亚型。采用PyRadiomics对肿瘤进行半自动分割,并提取放射组学特征。此外,使用3D ResNet-50卷积神经网络从DCE-MRI中提取深度特征。构建了三个模型:基于放射组学的模型,基于深度学习的模型,以及使用堆叠集成方法集成两种方法的混合模型。在测试数据集和独立的外部验证队列(n = 148)上,使用AUC、敏感性、特异性和其他指标评估模型性能。模型可解释性采用了SHAP和Grad-CAM技术。结果:混合模型在测试数据集上的AUC为0.921,灵敏度为88.6%,特异性为89.7%,显著优于单个方法。在外部验证队列中,表现仍然稳健(AUC = 0.903)。统计检验(DeLong和bootstrapping)证实了这些差异的显著性。最重要的贡献因素是与形状和纹理相关的放射学特征(如熵、球度)和高级深层特征。可视化突出了临床相关的模型注意区域。结论:提出的混合方法代表了一种临床适用的、非侵入性的乳腺癌亚型分类方法,在选定的病例中可能补充或部分替代活检。它提高了诊断的准确性,同时保持了可解释性。未来的工作将集中在精准肿瘤学框架内的前瞻性验证和整合基因组和临床数据。
{"title":"Integrating deep learning and radiomics for precise identification of luminal A/B breast cancer subtypes on dynamic contrast-enhanced MRI.","authors":"Jianfeng Shangguan, Elena Shchukina, Dimitar Monov, Svetlana Larina","doi":"10.1186/s40644-026-00996-z","DOIUrl":"https://doi.org/10.1186/s40644-026-00996-z","url":null,"abstract":"<p><strong>Background: </strong>Accurate differentiation between luminal A and B subtypes of breast cancer is critical for selecting therapeutic strategies. However, current approaches rely predominantly on invasive biopsy and immunohistochemical (IHC) analysis. Therefore, the development of non-invasive imaging-based methods capable of reliably classifying tumor subtypes remains an urgent task.</p><p><strong>Methods: </strong>To develop and validate a hybrid classification model combining radiomic and deep learning features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate between luminal A and B subtypes of invasive breast cancer. The study included 312 women from China, Russia and Bulgaria with confirmed luminal subtypes of breast cancer. All patients underwent standardized pre-treatment DCE-MRI, and subtypes were determined using IHC. Tumors were semi-automatically segmented, and radiomic features were extracted using PyRadiomics. Additionally, deep features were extracted from DCE-MRI using a 3D ResNet-50 convolutional neural network. Three models were constructed: a radiomics-based model, a deep learning-based model, and a hybrid model that integrated both approaches using a stacking ensemble method. Model performance was evaluated using AUC, sensitivity, specificity, and other metrics on a test dataset and an independent external validation cohort (n = 148). SHAP and Grad-CAM techniques were applied for model interpretability.</p><p><strong>Results: </strong>The hybrid model significantly outperformed the individual approaches, achieving an AUC of 0.921, sensitivity of 88.6%, and specificity of 89.7% on the test dataset. Performance remained robust in the external validation cohort (AUC = 0.903). Statistical tests (DeLong and bootstrapping) confirmed the significance of these differences. The most important contributors were radiomic features related to shape and texture (e.g., entropy, sphericity) and high-level deep features. Visualizations highlighted clinically relevant model attention areas.</p><p><strong>Conclusion: </strong>The proposed hybrid approach represents a clinically applicable, non-invasive method for classifying breast cancer subtypes, potentially complementing or partially replacing biopsy in selected cases. It enhances diagnostic accuracy while maintaining interpretability. Future work will focus on prospective validation and integration with genomic and clinical data within the framework of precision oncology.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146111727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicenter study provides radiomic and biological insights into neoadjuvant chemotherapy response and prognosis in luminal breast cancer. 多中心研究为腔内乳腺癌的新辅助化疗反应和预后提供放射学和生物学见解。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-02-02 DOI: 10.1186/s40644-026-00994-1
Shiyun Sun, Yansong Bai, Yingnan Bai, Yingying Ding, Yu Xie, Jinlong Zheng, Jiayin Zhou, Tingting Jiang, Yajia Gu, Zhuolin Li, Chao You
{"title":"Multicenter study provides radiomic and biological insights into neoadjuvant chemotherapy response and prognosis in luminal breast cancer.","authors":"Shiyun Sun, Yansong Bai, Yingnan Bai, Yingying Ding, Yu Xie, Jinlong Zheng, Jiayin Zhou, Tingting Jiang, Yajia Gu, Zhuolin Li, Chao You","doi":"10.1186/s40644-026-00994-1","DOIUrl":"https://doi.org/10.1186/s40644-026-00994-1","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146103923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A SHAP-interpretable XGBoost model: MRI-based intratumoral perfusion heterogeneity predicts HER2-zero, -low, and -positive ternary expression status in breast cancer. 一个shap可解释的XGBoost模型:基于mri的肿瘤内灌注异质性预测乳腺癌中her2零、低和阳性的三种表达状态。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-02-02 DOI: 10.1186/s40644-026-01000-4
Shuxing Wang, Xiaowen Liu, Yudie Pan, Cici Zhang, Yu Wu, Changsi Jiang, Xue Tang, Yan Luo, Jingshan Gong
{"title":"A SHAP-interpretable XGBoost model: MRI-based intratumoral perfusion heterogeneity predicts HER2-zero, -low, and -positive ternary expression status in breast cancer.","authors":"Shuxing Wang, Xiaowen Liu, Yudie Pan, Cici Zhang, Yu Wu, Changsi Jiang, Xue Tang, Yan Luo, Jingshan Gong","doi":"10.1186/s40644-026-01000-4","DOIUrl":"https://doi.org/10.1186/s40644-026-01000-4","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on predicting microsatellite instability in rectal cancer using T2 mapping combined with ADC value. T2定位结合ADC值预测直肠癌微卫星不稳定性的研究。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-30 DOI: 10.1186/s40644-026-00999-w
XiaoXin Zhao, YueJiao Hou, HongZhou Ma
{"title":"Study on predicting microsatellite instability in rectal cancer using T<sub>2</sub> mapping combined with ADC value.","authors":"XiaoXin Zhao, YueJiao Hou, HongZhou Ma","doi":"10.1186/s40644-026-00999-w","DOIUrl":"https://doi.org/10.1186/s40644-026-00999-w","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-layer spectral detector computed tomography multiparameter machine learning model for prediction of lymph node metastases in esophageal squamous cell carcinoma. 双层光谱检测器计算机断层扫描多参数机器学习模型预测食管鳞状细胞癌淋巴结转移。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-29 DOI: 10.1186/s40644-026-00993-2
Junjie Zhang, Ligang Hao, Peiyi Ma, Qiuxu Zhang, Linyi Jia, Fengxiao Gao
{"title":"Dual-layer spectral detector computed tomography multiparameter machine learning model for prediction of lymph node metastases in esophageal squamous cell carcinoma.","authors":"Junjie Zhang, Ligang Hao, Peiyi Ma, Qiuxu Zhang, Linyi Jia, Fengxiao Gao","doi":"10.1186/s40644-026-00993-2","DOIUrl":"https://doi.org/10.1186/s40644-026-00993-2","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146084407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human-AI interaction in a cancer-enriched double-reading breast screening cohort: diagnostic accuracy and second-reader behavior. 在癌症富集双读乳腺癌筛查队列中人类与人工智能的互动:诊断准确性和第二阅读者行为。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-24 DOI: 10.1186/s40644-026-00995-0
Eloïse Sossavi, Mickaël Tardy, Florie Hurstel, Jean Schwartz, Antoine Wackenthaler, Claire Harter, Julien Uttner, Mélanie Mollion, Marie-Françoise Bretz, Sébastien Molière
{"title":"Human-AI interaction in a cancer-enriched double-reading breast screening cohort: diagnostic accuracy and second-reader behavior.","authors":"Eloïse Sossavi, Mickaël Tardy, Florie Hurstel, Jean Schwartz, Antoine Wackenthaler, Claire Harter, Julien Uttner, Mélanie Mollion, Marie-Françoise Bretz, Sébastien Molière","doi":"10.1186/s40644-026-00995-0","DOIUrl":"https://doi.org/10.1186/s40644-026-00995-0","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146043566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The significance of small lymph nodes on CT for advanced poorly cohesive gastric carcinoma. 晚期低黏结性胃癌小淋巴结CT表现的意义。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-21 DOI: 10.1186/s40644-026-00991-4
Gyeongme Cho, Jae Yong Park, Eun Sun Lee, Hyun Ho Shin, Hyun-Wook Park, Hyun Jeong Park, Hee Sung Kim, Jong Won Kim, Beom Jin Kim, Jae Gyu Kim
{"title":"The significance of small lymph nodes on CT for advanced poorly cohesive gastric carcinoma.","authors":"Gyeongme Cho, Jae Yong Park, Eun Sun Lee, Hyun Ho Shin, Hyun-Wook Park, Hyun Jeong Park, Hee Sung Kim, Jong Won Kim, Beom Jin Kim, Jae Gyu Kim","doi":"10.1186/s40644-026-00991-4","DOIUrl":"https://doi.org/10.1186/s40644-026-00991-4","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146017572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MRI-based patient selection for active surveillance in prostate cancer using U-Found: a generalized deep learning model. 使用U-Found的基于mri的前列腺癌主动监测患者选择:广义深度学习模型。
IF 3.5 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-19 DOI: 10.1186/s40644-026-00988-z
Noah C Lowry, Adrian L Breto, Veronica Wallaengen, Ahmad Algohary, Nicolas Tapia-Stoll, Sandra M Gaston, Nachiketh S Prakash, Pedro F S Freitas, Oleksandr N Kryvenko, Patricia Castillo, Joel Saltz, Tahsin Kurc, Chad R Ritch, Bruno Nahar, Mark L Gonzalgo, Dipen J Parekh, Brandon Mahal, Benjamin O Spieler, Alan Dal Pra, Matthew C Abramowitz, Alan Pollack, Sanoj Punnen, Radka Stoyanova
{"title":"MRI-based patient selection for active surveillance in prostate cancer using U-Found: a generalized deep learning model.","authors":"Noah C Lowry, Adrian L Breto, Veronica Wallaengen, Ahmad Algohary, Nicolas Tapia-Stoll, Sandra M Gaston, Nachiketh S Prakash, Pedro F S Freitas, Oleksandr N Kryvenko, Patricia Castillo, Joel Saltz, Tahsin Kurc, Chad R Ritch, Bruno Nahar, Mark L Gonzalgo, Dipen J Parekh, Brandon Mahal, Benjamin O Spieler, Alan Dal Pra, Matthew C Abramowitz, Alan Pollack, Sanoj Punnen, Radka Stoyanova","doi":"10.1186/s40644-026-00988-z","DOIUrl":"https://doi.org/10.1186/s40644-026-00988-z","url":null,"abstract":"","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146003226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1