Using gut microbiota and non-targeted metabolomics techniques to study the effect of xylitol on alleviating DSS-induced inflammatory bowel disease in mice.
{"title":"Using gut microbiota and non-targeted metabolomics techniques to study the effect of xylitol on alleviating DSS-induced inflammatory bowel disease in mice.","authors":"Peng Ma, Wen Sun, Chang Sun, Jiajun Tan, Xueyun Dong, Jiayuan He, Asmaa Ali, Min Chen, Leilei Zhang, Liang Wu, Pingping Wang","doi":"10.1186/s12865-025-00700-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inflammatory bowel disease (IBD) has become a global healthcare issue, with its incidence continuing to rise, but currently there is no complete cure. Xylitol is a widely used sweetener in various foods and beverages, but there is limited research on the effects of xylitol on IBD symptoms.</p><p><strong>Aim: </strong>Study on the effect of oral xylitol in improving intestinal inflammation and damage in IBD mice, further explore the mechanism of xylitol in alleviating IBD symptoms using intestinal microbiota and non-targeted metabolomics techniques.</p><p><strong>Methods: </strong>An IBD mouse model was induced using sodium dextran sulfate (DSS). After 30 days of oral administration of xylitol, we assessed the disease activity index (DAI) scores of mice in each group. The expression levels of inflammatory factors in the colon tissues were measured using qPCR. Additionally, we examined the damage to the intestinal mucosa and tight junction structures through HE staining and immunohistochemical staining. Finally, the alterations in the gut microbiota of the mice were analyzed using 16S rDNA sequencing technology.The production of three main short-chain fatty acids (SCFAs, including acetate, propionic acid and butyric acid) in feces and the changes of serum metabolomics were measured by non-targeted metabolomics techniques.</p><p><strong>Results: </strong>The findings indicated that xylitol effectively mitigated weight loss and improved the DAI score in mice with IBD. Moreover, xylitol reduced the expressions of Caspase-1, IL-1β, and TNF-α in the colon tissue of the mice, and increased the expressions of ZO-1 and occludin in intestinal mucosal. Xylitol could enhance the variety of intestinal bacteria in IBD mice and influenced the abundance of different bacterial species. Additionally, metabolomic analysis revealed that oral xylitol increased the levels of three main SCFAs in the feces of IBD mice, while also impacting serum metabolites.</p><p><strong>Conclusions: </strong>Our findings suggest that xylitol can help improve IBD symptoms. Xylitol can improve the intestinal flora of IBD mice and increase the production of SCFAs to play an anti-inflammatory role and protect the mucosal tight junction barrier. These discoveries present a fresh prophylactic treatment of IBD.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9040,"journal":{"name":"BMC Immunology","volume":"26 1","pages":"18"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12865-025-00700-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Inflammatory bowel disease (IBD) has become a global healthcare issue, with its incidence continuing to rise, but currently there is no complete cure. Xylitol is a widely used sweetener in various foods and beverages, but there is limited research on the effects of xylitol on IBD symptoms.
Aim: Study on the effect of oral xylitol in improving intestinal inflammation and damage in IBD mice, further explore the mechanism of xylitol in alleviating IBD symptoms using intestinal microbiota and non-targeted metabolomics techniques.
Methods: An IBD mouse model was induced using sodium dextran sulfate (DSS). After 30 days of oral administration of xylitol, we assessed the disease activity index (DAI) scores of mice in each group. The expression levels of inflammatory factors in the colon tissues were measured using qPCR. Additionally, we examined the damage to the intestinal mucosa and tight junction structures through HE staining and immunohistochemical staining. Finally, the alterations in the gut microbiota of the mice were analyzed using 16S rDNA sequencing technology.The production of three main short-chain fatty acids (SCFAs, including acetate, propionic acid and butyric acid) in feces and the changes of serum metabolomics were measured by non-targeted metabolomics techniques.
Results: The findings indicated that xylitol effectively mitigated weight loss and improved the DAI score in mice with IBD. Moreover, xylitol reduced the expressions of Caspase-1, IL-1β, and TNF-α in the colon tissue of the mice, and increased the expressions of ZO-1 and occludin in intestinal mucosal. Xylitol could enhance the variety of intestinal bacteria in IBD mice and influenced the abundance of different bacterial species. Additionally, metabolomic analysis revealed that oral xylitol increased the levels of three main SCFAs in the feces of IBD mice, while also impacting serum metabolites.
Conclusions: Our findings suggest that xylitol can help improve IBD symptoms. Xylitol can improve the intestinal flora of IBD mice and increase the production of SCFAs to play an anti-inflammatory role and protect the mucosal tight junction barrier. These discoveries present a fresh prophylactic treatment of IBD.
期刊介绍:
BMC Immunology is an open access journal publishing original peer-reviewed research articles in molecular, cellular, tissue-level, organismal, functional, and developmental aspects of the immune system as well as clinical studies and animal models of human diseases.