Corentine Guilloton, Frank Le Foll, Yosra Ben Cheikh
{"title":"Haemocyte motility: a marker of inflammation in Mytilus sp.","authors":"Corentine Guilloton, Frank Le Foll, Yosra Ben Cheikh","doi":"10.1016/j.fsi.2025.110268","DOIUrl":null,"url":null,"abstract":"<p><p>Bivalve immunity relies exclusively on innate cellular and humoral mechanisms, during which cells named haemocytes maraud across tissues to survey the organism and cope with invaders through migration towards infected site. Immune response is therefore governed by haemocyte motility. This review focuses on the different types of haemocyte movement in Mytilus sp. to address their role in immunity, from random patrolling of organs to directed pathogen elimination. By forming cell clusters or aggregates of different sizes, haemocyte displacements define inflammation per se in mussels. Although described for many years, motility can now be quantified by advanced microscopy techniques that give access to cell velocity values, allowing us to quantify inflammation. As various biotic and abiotic factors have been found to modulate haemocyte velocity, this parameter can be considered a marker to assess the inflammation level, paving the way for future developments in determining the immune status of mussels.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110268"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2025.110268","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Bivalve immunity relies exclusively on innate cellular and humoral mechanisms, during which cells named haemocytes maraud across tissues to survey the organism and cope with invaders through migration towards infected site. Immune response is therefore governed by haemocyte motility. This review focuses on the different types of haemocyte movement in Mytilus sp. to address their role in immunity, from random patrolling of organs to directed pathogen elimination. By forming cell clusters or aggregates of different sizes, haemocyte displacements define inflammation per se in mussels. Although described for many years, motility can now be quantified by advanced microscopy techniques that give access to cell velocity values, allowing us to quantify inflammation. As various biotic and abiotic factors have been found to modulate haemocyte velocity, this parameter can be considered a marker to assess the inflammation level, paving the way for future developments in determining the immune status of mussels.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.