Zhibo Xie, Heng Long, Chengyi Ling, Yingjun Zhou, Yan Luo
{"title":"An anomaly detection scheme for data stream in cold chain logistics.","authors":"Zhibo Xie, Heng Long, Chengyi Ling, Yingjun Zhou, Yan Luo","doi":"10.1371/journal.pone.0315322","DOIUrl":null,"url":null,"abstract":"<p><p>Anomaly detection is widely used in cold chain logistics (CCL). But, because of the high cost and technical problem, the anomaly detection performance is poor, and the anomaly can not be detected in time, which affects the quality of goods. To solve these problems, the paper presents a new anomaly detection scheme for CCL. At first, the characteristics of the collected data of CCL are analyzed, the mathematical model of data flow is established, and the sliding window and correlation coefficient are defined. Then the abnormal events in CCL are summarized, and three types of abnormal judgment conditions based on cor-relation coefficient ρjk are deduced. A measurement anomaly detection algorithm based on the improved isolated forest algorithm is proposed. Subsampling and cross factor are designed and used to overcome the shortcomings of the isolated forest algorithm (iForest). Experiments have shown that as the dimensionality of the data increases, the performance indicators of the new scheme, such as P (precision), R (recall), F1 score, and AUC (area under the curve), become increasingly superior to commonly used support vector machines (SVM), local outlier factors (LOF), and iForests. Its average P is 0.8784, average R is 0.8731, average F1 score is 0.8639, and average AUC is 0.9064. However, the execution time of the improved algorithm is slightly longer than that of the iForest.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0315322"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315322","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Anomaly detection is widely used in cold chain logistics (CCL). But, because of the high cost and technical problem, the anomaly detection performance is poor, and the anomaly can not be detected in time, which affects the quality of goods. To solve these problems, the paper presents a new anomaly detection scheme for CCL. At first, the characteristics of the collected data of CCL are analyzed, the mathematical model of data flow is established, and the sliding window and correlation coefficient are defined. Then the abnormal events in CCL are summarized, and three types of abnormal judgment conditions based on cor-relation coefficient ρjk are deduced. A measurement anomaly detection algorithm based on the improved isolated forest algorithm is proposed. Subsampling and cross factor are designed and used to overcome the shortcomings of the isolated forest algorithm (iForest). Experiments have shown that as the dimensionality of the data increases, the performance indicators of the new scheme, such as P (precision), R (recall), F1 score, and AUC (area under the curve), become increasingly superior to commonly used support vector machines (SVM), local outlier factors (LOF), and iForests. Its average P is 0.8784, average R is 0.8731, average F1 score is 0.8639, and average AUC is 0.9064. However, the execution time of the improved algorithm is slightly longer than that of the iForest.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage