Development of an enzymatic cascade for semi de novo ATP production using thermophilic enzymes.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of bioscience and bioengineering Pub Date : 2025-03-09 DOI:10.1016/j.jbiosc.2025.02.005
Takuma Suzuki, Suryatin Alim Gladwin, Kentaro Miyazaki, Hiroya Tomita, Kohsuke Honda
{"title":"Development of an enzymatic cascade for semi de novo ATP production using thermophilic enzymes.","authors":"Takuma Suzuki, Suryatin Alim Gladwin, Kentaro Miyazaki, Hiroya Tomita, Kohsuke Honda","doi":"10.1016/j.jbiosc.2025.02.005","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial production of ATP has mostly relied on extraction from living cells. Although microbial and enzymatic ATP production have also been developed, the former suffers from complexity in product separation, while the latter requires expensive substrates, making their practical use difficult. To tackle these problems, we newly developed an enzymatic cascade for ATP production, which does not use expensive substrates, by assembling 16 thermophilic enzymes prepared through a heat-purification from the crude extract of recombinant Escherichia coli. This cascade consists of two modules: an ATP regeneration module based on a non-oxidative glycolysis and an ADP supply module. The ATP regeneration module can provide the energy required for phosphorylation of AMP and ADP to ATP while simultaneously supplying ribose-5-phosphate, a building block of adenosine phosphates, from inexpensive starch and inorganic phosphate. Ribose-5-phosphate is then adenylated with exogenously supplied adenine in the ADP supply module and further phosphorylated to ATP. This ATP production cascade is not accompanied by CO<sub>2</sub> emission and is expected to be a novel ATP manufacturing platform with less environmental impact. In the present study, ATP production with 100 % molar conversion yield was achieved from 1 mM adenine. However, increasing the initial adenine concentration resulted in lower yields. Enzyme characterization and docking simulations revealed that this decline was due to non-competitive inhibition of certain enzymes by ATP, which could potentially be mitigated through protein engineering.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2025.02.005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial production of ATP has mostly relied on extraction from living cells. Although microbial and enzymatic ATP production have also been developed, the former suffers from complexity in product separation, while the latter requires expensive substrates, making their practical use difficult. To tackle these problems, we newly developed an enzymatic cascade for ATP production, which does not use expensive substrates, by assembling 16 thermophilic enzymes prepared through a heat-purification from the crude extract of recombinant Escherichia coli. This cascade consists of two modules: an ATP regeneration module based on a non-oxidative glycolysis and an ADP supply module. The ATP regeneration module can provide the energy required for phosphorylation of AMP and ADP to ATP while simultaneously supplying ribose-5-phosphate, a building block of adenosine phosphates, from inexpensive starch and inorganic phosphate. Ribose-5-phosphate is then adenylated with exogenously supplied adenine in the ADP supply module and further phosphorylated to ATP. This ATP production cascade is not accompanied by CO2 emission and is expected to be a novel ATP manufacturing platform with less environmental impact. In the present study, ATP production with 100 % molar conversion yield was achieved from 1 mM adenine. However, increasing the initial adenine concentration resulted in lower yields. Enzyme characterization and docking simulations revealed that this decline was due to non-competitive inhibition of certain enzymes by ATP, which could potentially be mitigated through protein engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
期刊最新文献
Application of silica monoliths for improved storage stability of metabolites in human plasma. Role of low-level alternating current and impedance for enhancing microalgae biomass and lipid production. Development of an enzymatic cascade for semi de novo ATP production using thermophilic enzymes. Multi-gene metabolic engineering of Pichia pastoris to synthesize ectoine. Enhancing specimen preparation for transmission electron microscopy: Trypan Blue staining and low-melting-point agar embedding for ultra-thin cell sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1