Exploring aerosol-specific calibration and performance of three direct-reading photometers.

IF 1.5 4区 医学 Q4 ENVIRONMENTAL SCIENCES Journal of Occupational and Environmental Hygiene Pub Date : 2025-03-10 DOI:10.1080/15459624.2025.2473461
Karl O Braun
{"title":"Exploring aerosol-specific calibration and performance of three direct-reading photometers.","authors":"Karl O Braun","doi":"10.1080/15459624.2025.2473461","DOIUrl":null,"url":null,"abstract":"<p><p>Laser photometers provide real-time data on airborne aerosols. They are a valuable tool for assessing task exposures, as well as process and environmental changes. However, their performance compared to the validated National Institute of Occupational Health and Safety (NIOSH) method Particulates Not Otherwise Regulated, Respirable 0600 gravitational method is uncertain. NIOSH has established a criterion for sampling and analytical methods to be within 25% of the 'true' concentration. Manufacturers and research scientists cite the importance of using an aerosol-specific calibration factor to improve instrument correlation with the gravimetric method. Field data from three photometers are presented to illustrate instrument performance variability and evaluate single and averaged aerosol-specific calibration factors. Respirable particulate and respirable crystalline silica (RCS) were simultaneously measured ten times in an operating rock crushing facility using the NIOSH methods 0600 and 7500 Silica, Crystalline, by XRD (filter redeposition) and three factory calibrated photometers. Ten aerosol-specific calibration factors were calculated for each photometer and used to determine single and averaged aerosol-specific calibration factors. Single and averaged aerosol-specific calibration factors were mathematically applied to \"correct\" the factory calibrated instrument measurements. Performance was evaluated using absolute relative error. With the factory calibration, the average absolute relative error for each instrument exceeded 25%. A single-event aerosol-specific calibration factor reduced the average absolute relative error for all instruments, bringing it below 25% for one of the three photometers. A 3-run average aerosol-specific calibration factor reduced the average absolute relative error below 25% for all instruments. Further averaging of calibration factor provided no significant advantage. The 95th percentile of absolute error fell below 25% for one of the tested instruments when applying both a single and averaged calibration factor but remained above 25% for the other two instruments. Field testing of the single-run, three-run average and ten-run average calibration factors revealed that the absolute relative error exceeded 25% in at least one of the three CF-field tests for each instrument. The average absolute relative error in estimates of RCS varied from 7 to 38%.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"1-10"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2025.2473461","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Laser photometers provide real-time data on airborne aerosols. They are a valuable tool for assessing task exposures, as well as process and environmental changes. However, their performance compared to the validated National Institute of Occupational Health and Safety (NIOSH) method Particulates Not Otherwise Regulated, Respirable 0600 gravitational method is uncertain. NIOSH has established a criterion for sampling and analytical methods to be within 25% of the 'true' concentration. Manufacturers and research scientists cite the importance of using an aerosol-specific calibration factor to improve instrument correlation with the gravimetric method. Field data from three photometers are presented to illustrate instrument performance variability and evaluate single and averaged aerosol-specific calibration factors. Respirable particulate and respirable crystalline silica (RCS) were simultaneously measured ten times in an operating rock crushing facility using the NIOSH methods 0600 and 7500 Silica, Crystalline, by XRD (filter redeposition) and three factory calibrated photometers. Ten aerosol-specific calibration factors were calculated for each photometer and used to determine single and averaged aerosol-specific calibration factors. Single and averaged aerosol-specific calibration factors were mathematically applied to "correct" the factory calibrated instrument measurements. Performance was evaluated using absolute relative error. With the factory calibration, the average absolute relative error for each instrument exceeded 25%. A single-event aerosol-specific calibration factor reduced the average absolute relative error for all instruments, bringing it below 25% for one of the three photometers. A 3-run average aerosol-specific calibration factor reduced the average absolute relative error below 25% for all instruments. Further averaging of calibration factor provided no significant advantage. The 95th percentile of absolute error fell below 25% for one of the tested instruments when applying both a single and averaged calibration factor but remained above 25% for the other two instruments. Field testing of the single-run, three-run average and ten-run average calibration factors revealed that the absolute relative error exceeded 25% in at least one of the three CF-field tests for each instrument. The average absolute relative error in estimates of RCS varied from 7 to 38%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Occupational and Environmental Hygiene
Journal of Occupational and Environmental Hygiene 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
10.00%
发文量
81
审稿时长
12-24 weeks
期刊介绍: The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality. The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.
期刊最新文献
Exploring aerosol-specific calibration and performance of three direct-reading photometers. Toward rapid silica analysis of CPDM samples: A study of dust recovery and quartz estimation using lab and field samples. A comparison of the ventilatory responses to wearing either a hood or a mask escape respirator with identical nose-cups. Lessons learned in establishing and sustaining elastomeric half mask respirator-based respiratory protection programs: An impact evaluation. Hazardous exposures and engineering controls in the landscaping services industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1