{"title":"Field-free Josephson diode effect in interacting chiral quantum dot junctions.","authors":"Debika Debnath, Paramita Dutta","doi":"10.1088/1361-648X/adbeaf","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate chiral quantum dot (QD)-based Josephson junction and show the correlation-induced Josephson diode effect (JDE) in it. The presence of electron-electron interaction spontaneously creates an imbalance between up- and down-spin electrons during the non-equilibrium transport making the QD effectively magnetic. The simultaneous presence of the chirality and the interaction eventually results in the field-free JDE in our chiral QD junction. We employ the Keldysh non-equilibrium Green's function technique to study the behavior of the Josephson current and the rectification coefficient (RC) of our Josephson diode (JD). We show a sign-changing behavior of the RC with the Coulomb correlation and the lead-to-dot coupling strength and find the maximum magnitude of the RC∼72%for moderate interaction strength. Our proposed field-free JD based on interacting chiral QD may be a potential switching component in superconductor based devices.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adbeaf","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate chiral quantum dot (QD)-based Josephson junction and show the correlation-induced Josephson diode effect (JDE) in it. The presence of electron-electron interaction spontaneously creates an imbalance between up- and down-spin electrons during the non-equilibrium transport making the QD effectively magnetic. The simultaneous presence of the chirality and the interaction eventually results in the field-free JDE in our chiral QD junction. We employ the Keldysh non-equilibrium Green's function technique to study the behavior of the Josephson current and the rectification coefficient (RC) of our Josephson diode (JD). We show a sign-changing behavior of the RC with the Coulomb correlation and the lead-to-dot coupling strength and find the maximum magnitude of the RC∼72%for moderate interaction strength. Our proposed field-free JD based on interacting chiral QD may be a potential switching component in superconductor based devices.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.