A nomogram to predict gestational diabetes mellitus: a multi-center retrospective study.

IF 5.3 2区 生物学 Q2 CELL BIOLOGY Journal of Molecular Cell Biology Pub Date : 2025-03-10 DOI:10.1093/jmcb/mjaf008
Rui Zhang, Zhangyan Li, Nuerbiya Xilifu, Mengxue Yang, Yongling Dai, Shufei Zang, Jun Liu
{"title":"A nomogram to predict gestational diabetes mellitus: a multi-center retrospective study.","authors":"Rui Zhang, Zhangyan Li, Nuerbiya Xilifu, Mengxue Yang, Yongling Dai, Shufei Zang, Jun Liu","doi":"10.1093/jmcb/mjaf008","DOIUrl":null,"url":null,"abstract":"<p><p>While gestational diabetes mellitus (GDM) poses great threat to the health of mothers and children, there is no standard early prediction model for this disease yet. This study developed and evaluated a nomogram for predicting GDM in early pregnancy. Overall, 1824 pregnant women were randomly divided into the training and internal validation sets in the ratio of 7:3, with additional 1604 pregnant women for external validation. Multivariate logistic regression analysis was used to develop a prediction model for GDM, and a nomogram was utilized for model visualization. Risk factors in the prediction model involved age, pre-pregnancy body mass index, reproductive history, family history of diabetes, creatinine level, triglyceride level, low-density lipoprotein level, neutrophil count, and monocyte count. Model performance was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision clinical analysis (DCA). The area under ROC curve (AUC) value of the model was 0.804 for the training set, and similar AUC values were obtained for the internal (0.800) and external (0.829) validation sets, verifying the stability of the model. The calibration curves showed that the probabilities of GDM predicted by the nomogram highly correlated with the observed frequency values. The DCA curves indicated that the prediction model is clinically useful, thus potentially aiding early pregnancy management in women.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While gestational diabetes mellitus (GDM) poses great threat to the health of mothers and children, there is no standard early prediction model for this disease yet. This study developed and evaluated a nomogram for predicting GDM in early pregnancy. Overall, 1824 pregnant women were randomly divided into the training and internal validation sets in the ratio of 7:3, with additional 1604 pregnant women for external validation. Multivariate logistic regression analysis was used to develop a prediction model for GDM, and a nomogram was utilized for model visualization. Risk factors in the prediction model involved age, pre-pregnancy body mass index, reproductive history, family history of diabetes, creatinine level, triglyceride level, low-density lipoprotein level, neutrophil count, and monocyte count. Model performance was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision clinical analysis (DCA). The area under ROC curve (AUC) value of the model was 0.804 for the training set, and similar AUC values were obtained for the internal (0.800) and external (0.829) validation sets, verifying the stability of the model. The calibration curves showed that the probabilities of GDM predicted by the nomogram highly correlated with the observed frequency values. The DCA curves indicated that the prediction model is clinically useful, thus potentially aiding early pregnancy management in women.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
期刊最新文献
A nomogram to predict gestational diabetes mellitus: a multi-center retrospective study. Novel roles of ammonia in physiology and cancer. Argon improves microglia-mediated hippocampal neuronal hyperexcitability to alleviate anxiety-like behaviors in mice. Combination Therapy Dramatically Promotes Remyelination. Comments on 'Vimentin intermediate filaments coordinate actin stress fibers and podosomes to determine the extracellular matrix degradation by macrophages'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1