{"title":"PLD2 is a marker for MASLD-HCC with early-stage fibrosis: revealed by lipidomic and gene expression analysis.","authors":"Jihan Sun, Fatima Dahboul, Estelle Pujos-Guillot, Mélanie Petera, Emeline Chu-Van, Benoit Colsch, Delphine Weil, Vincent Di Martino, Aicha Demidem, Armando Abergel","doi":"10.1007/s11306-025-02226-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Metabolic steatotic liver disease (MASLD) can progress to hepatocellular carcinoma (HCC). 25% of MASLD-HCCs occur in the absence of fibrosis.</p><p><strong>Objectives: </strong>This study aimed to explore lipid metabolic pathways through \"omics\" and to identify biomarkers of MASLD-HCC based on the degree of fibrosis.</p><p><strong>Methods: </strong>Our cohort included 79 pairs of MASLD-HCC tumor tissues (TT) and adjacent non-tumor human liver tissues (NTT), which were divided into two groups according to fibrosis degree (F0F2 n = 45 and F3F4 n = 34). Lipidomic analysis (n = 52) using liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS) and gene expression analysis (n = 79) using RT-qPCR were performed. For each group, TT was compared with NTT. Five healthy liver tissues were used as calibrators in gene expression analysis.</p><p><strong>Results: </strong>Using LC-HRMS/MS, 130 lipids were putatively annotated, 30 of which showed a significant difference between TT and NTT. In MASLD-HCC-F0F2, ceramide levels decreased. While sphingomyelin, most phosphatidylcholine and phosphatidylethanolamine species were increased. In contrast, in MASLD-HCC-F3F4, most lipid contents decreased. Based on lipidomic data, a panel of 18 genes related to lipid metabolism was analyzed. The expression of six genes, ACAT2, DGAT2, ACOX1, CHKA, PLD1, and PLD2, was exclusively upregulated in MASLD-HCC-F0F2. Taken together, these data support the existence of two MASLD-HCC lipid metabolic phenotypes, according to the degree of fibrosis.</p><p><strong>Conclusion: </strong>In conclusion, our results allow: (1) discriminate two phenotypes of MASLD-HCC according to fibrosis level; (2) propose PLD as a potential drug target for MASLD-HCC-F0F2 patients, and suggest that PLD inhibitor could be evaluated in combination with immunotherapy treatment.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 2","pages":"39"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02226-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Metabolic steatotic liver disease (MASLD) can progress to hepatocellular carcinoma (HCC). 25% of MASLD-HCCs occur in the absence of fibrosis.
Objectives: This study aimed to explore lipid metabolic pathways through "omics" and to identify biomarkers of MASLD-HCC based on the degree of fibrosis.
Methods: Our cohort included 79 pairs of MASLD-HCC tumor tissues (TT) and adjacent non-tumor human liver tissues (NTT), which were divided into two groups according to fibrosis degree (F0F2 n = 45 and F3F4 n = 34). Lipidomic analysis (n = 52) using liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS) and gene expression analysis (n = 79) using RT-qPCR were performed. For each group, TT was compared with NTT. Five healthy liver tissues were used as calibrators in gene expression analysis.
Results: Using LC-HRMS/MS, 130 lipids were putatively annotated, 30 of which showed a significant difference between TT and NTT. In MASLD-HCC-F0F2, ceramide levels decreased. While sphingomyelin, most phosphatidylcholine and phosphatidylethanolamine species were increased. In contrast, in MASLD-HCC-F3F4, most lipid contents decreased. Based on lipidomic data, a panel of 18 genes related to lipid metabolism was analyzed. The expression of six genes, ACAT2, DGAT2, ACOX1, CHKA, PLD1, and PLD2, was exclusively upregulated in MASLD-HCC-F0F2. Taken together, these data support the existence of two MASLD-HCC lipid metabolic phenotypes, according to the degree of fibrosis.
Conclusion: In conclusion, our results allow: (1) discriminate two phenotypes of MASLD-HCC according to fibrosis level; (2) propose PLD as a potential drug target for MASLD-HCC-F0F2 patients, and suggest that PLD inhibitor could be evaluated in combination with immunotherapy treatment.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.