Riccardo Pieraccini, Lawrence Whatley, Nico Koedam, Ann Vanreusel, Tobias Dolch, Jasper Dierick, Tom Van der Stocken
{"title":"Gibberellic acid and light effects on seed germination in the seagrass Zostera marina.","authors":"Riccardo Pieraccini, Lawrence Whatley, Nico Koedam, Ann Vanreusel, Tobias Dolch, Jasper Dierick, Tom Van der Stocken","doi":"10.1111/ppl.70137","DOIUrl":null,"url":null,"abstract":"<p><p>Seagrass meadows have been heavily affected by human activities, with Zostera marina L. (Zosteraceae) being one of the most impacted species. Seed-based methods are currently the preferred approach for their restoration, yet low germination rates and poor seedling establishment remain significant challenges. This study explored the combined effects of light spectra (white, red, and darkness), photoperiod, and gibberellic acid (GA<sub>3-</sub>0, 50, 500, and 1000 mg L<sup>-1</sup>) on Z. marina seed germination using a fully crossed incubation experiment. Penalised logistic regression and Cox proportional hazards analysis were chosen to account for low germination events and to analyse the temporal dynamics of germination. We found that light conditions, particularly red light and darkness, when combined with GA<sub>3</sub>, significantly enhanced germination probability. Furthermore, mid (50 mg L<sup>-1</sup>) and high (500 mg L<sup>-1</sup>) GA<sub>3</sub> concentrations reduced time-to-germination. Morphometric analysis of the cotyledonary and leaf tissue development indicates no adverse effects of the treatments on seedling development. Our findings suggest that light and GA<sub>3</sub> treatments effectively improve germination success and reduce dormancy in Z. marina seeds. Seed treatments can mitigate stress- or manipulation-induced dormancy and can represent a viable strategy for on-demand germination, such as in the context of seed-based restoration efforts.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70137"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894247/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70137","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seagrass meadows have been heavily affected by human activities, with Zostera marina L. (Zosteraceae) being one of the most impacted species. Seed-based methods are currently the preferred approach for their restoration, yet low germination rates and poor seedling establishment remain significant challenges. This study explored the combined effects of light spectra (white, red, and darkness), photoperiod, and gibberellic acid (GA3-0, 50, 500, and 1000 mg L-1) on Z. marina seed germination using a fully crossed incubation experiment. Penalised logistic regression and Cox proportional hazards analysis were chosen to account for low germination events and to analyse the temporal dynamics of germination. We found that light conditions, particularly red light and darkness, when combined with GA3, significantly enhanced germination probability. Furthermore, mid (50 mg L-1) and high (500 mg L-1) GA3 concentrations reduced time-to-germination. Morphometric analysis of the cotyledonary and leaf tissue development indicates no adverse effects of the treatments on seedling development. Our findings suggest that light and GA3 treatments effectively improve germination success and reduce dormancy in Z. marina seeds. Seed treatments can mitigate stress- or manipulation-induced dormancy and can represent a viable strategy for on-demand germination, such as in the context of seed-based restoration efforts.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.