Development of a deep learning-based model for guiding a dissection during robotic breast surgery.

IF 7.4 1区 医学 Q1 Medicine Breast Cancer Research Pub Date : 2025-03-10 DOI:10.1186/s13058-025-01981-3
Jeea Lee, Sungwon Ham, Namkug Kim, Hyung Seok Park
{"title":"Development of a deep learning-based model for guiding a dissection during robotic breast surgery.","authors":"Jeea Lee, Sungwon Ham, Namkug Kim, Hyung Seok Park","doi":"10.1186/s13058-025-01981-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditional surgical education is based on observation and assistance in surgical practice. Recently introduced deep learning (DL) techniques enable the recognition of the surgical view and automatic identification of surgical landmarks. However, there was no previous studies have conducted to develop surgical guide for robotic breast surgery. To develop a DL model for guiding the dissection plane during robotic mastectomy for beginners and trainees.</p><p><strong>Methods: </strong>Ten surgical videos of robotic mastectomy procedures were recorded. Video frames taken at 1-s intervals were converted to PNG format. The ground truth was manually delineated by two experienced surgeons using ImageJ software. The evaluation metrics were the Dice similarity coefficient (DSC) and Hausdorff distance (HD).</p><p><strong>Results: </strong>A total of 8,834 images were extracted from ten surgical videos of robotic mastectomies performed between 2016 and 2020. Skin flap dissection during the robotic mastectomy console time was recorded. The median age and body mass index of the patients was 47.5 (38-52) years and 22.00 (19.30-29.52) kg/m<sup>2</sup>, respectively, and the median console time was 32 (21-48) min. Among the 8,834 images, 428 were selected and divided into training, validation, and testing datasets at a ratio of 7:1:2. Two experts determined that the DSC of our model was 0.828[Formula: see text]5.28 and 0.818[Formula: see text]6.96, while the HDs were 9.80[Formula: see text]2.57 and 10.32[Formula: see text]1.09.</p><p><strong>Conclusion: </strong>DL can serve as a surgical guide for beginners and trainees, and can be used as a training tool to enhance surgeons' surgical skills.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"34"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01981-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traditional surgical education is based on observation and assistance in surgical practice. Recently introduced deep learning (DL) techniques enable the recognition of the surgical view and automatic identification of surgical landmarks. However, there was no previous studies have conducted to develop surgical guide for robotic breast surgery. To develop a DL model for guiding the dissection plane during robotic mastectomy for beginners and trainees.

Methods: Ten surgical videos of robotic mastectomy procedures were recorded. Video frames taken at 1-s intervals were converted to PNG format. The ground truth was manually delineated by two experienced surgeons using ImageJ software. The evaluation metrics were the Dice similarity coefficient (DSC) and Hausdorff distance (HD).

Results: A total of 8,834 images were extracted from ten surgical videos of robotic mastectomies performed between 2016 and 2020. Skin flap dissection during the robotic mastectomy console time was recorded. The median age and body mass index of the patients was 47.5 (38-52) years and 22.00 (19.30-29.52) kg/m2, respectively, and the median console time was 32 (21-48) min. Among the 8,834 images, 428 were selected and divided into training, validation, and testing datasets at a ratio of 7:1:2. Two experts determined that the DSC of our model was 0.828[Formula: see text]5.28 and 0.818[Formula: see text]6.96, while the HDs were 9.80[Formula: see text]2.57 and 10.32[Formula: see text]1.09.

Conclusion: DL can serve as a surgical guide for beginners and trainees, and can be used as a training tool to enhance surgeons' surgical skills.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
76
审稿时长
12 weeks
期刊介绍: Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.
期刊最新文献
Neoadjuvant chemotherapy response in androgen receptor-positive triple-negative breast cancer: potential predictive biomarkers and genetic alterations. Pathological complete response, histologic grade, and level of stromal tumor-infiltrating lymphocytes in ER + HER2- breast cancer. Evaluation of the androgen receptor in patients with ERα-positive early breast cancer treated with adjuvant tamoxifen ± fluoxymesterone. Pathologic response rates in HER2-low versus HER2-zero early breast cancer patients receiving neoadjuvant therapy: a systematic review and meta-analysis. Role of circulating tumor DNA in early-stage triple-negative breast cancer: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1