Jonas Bjermo, Ellinor Fackle-Fornius, Frank Miller
{"title":"Optimizing calibration designs with uncertainty in abilities.","authors":"Jonas Bjermo, Ellinor Fackle-Fornius, Frank Miller","doi":"10.1111/bmsp.12387","DOIUrl":null,"url":null,"abstract":"<p><p>Before items can be implemented in a test, the item characteristics need to be calibrated through pretesting. To achieve high-quality tests, it's crucial to maximize the precision of estimates obtained during item calibration. Higher precision can be attained if calibration items are allocated to examinees based on their individual abilities. Methods from optimal experimental design can be used to derive an optimal ability-matched calibration design. However, such an optimal design assumes known abilities of the examinees. In practice, the abilities are unknown and estimated based on a limited number of operational items. We develop the theory for handling the uncertainty in abilities in a proper way and show how the optimal calibration design can be derived when taking account of this uncertainty. We demonstrate that the derived designs are more robust when the uncertainty in abilities is acknowledged. Additionally, the method has been implemented in the R-package optical.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12387","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Before items can be implemented in a test, the item characteristics need to be calibrated through pretesting. To achieve high-quality tests, it's crucial to maximize the precision of estimates obtained during item calibration. Higher precision can be attained if calibration items are allocated to examinees based on their individual abilities. Methods from optimal experimental design can be used to derive an optimal ability-matched calibration design. However, such an optimal design assumes known abilities of the examinees. In practice, the abilities are unknown and estimated based on a limited number of operational items. We develop the theory for handling the uncertainty in abilities in a proper way and show how the optimal calibration design can be derived when taking account of this uncertainty. We demonstrate that the derived designs are more robust when the uncertainty in abilities is acknowledged. Additionally, the method has been implemented in the R-package optical.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.