{"title":"Zero-Energy Photoelectric Effect","authors":"Sajad Azizi, Ulf Saalmann, Jan M. Rost","doi":"10.1103/physrevlett.134.103201","DOIUrl":null,"url":null,"abstract":"We predict a near-threshold (“zero energy”) peak in multiphoton ionization for a dynamical regime where the photon frequency is large compared to the binding energy of the electron. The peak position does not depend on the laser frequency but on the binding energy and the pulse duration. The effect originates from the fact that bound-continuum dipole transitions are stronger than continuum-continuum ones. To clearly observe this zero-energy photoelectric effect, the spectral width of the laser pulse should be comparable to the binding energy of the ionized orbital, and the second ionization potential should be larger than the photon energy. This suggests negative ions as ideal candidates for corresponding experiments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"38 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.103201","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We predict a near-threshold (“zero energy”) peak in multiphoton ionization for a dynamical regime where the photon frequency is large compared to the binding energy of the electron. The peak position does not depend on the laser frequency but on the binding energy and the pulse duration. The effect originates from the fact that bound-continuum dipole transitions are stronger than continuum-continuum ones. To clearly observe this zero-energy photoelectric effect, the spectral width of the laser pulse should be comparable to the binding energy of the ionized orbital, and the second ionization potential should be larger than the photon energy. This suggests negative ions as ideal candidates for corresponding experiments. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks