Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept

IF 26.1 1区 计算机科学 Q1 ROBOTICS Science Robotics Pub Date : 2025-03-12 DOI:10.1126/scirobotics.adn5564
Nicolas Hankov, Miroslav Caban, Robin Demesmaeker, Margaux Roulet, Salif Komi, Michele Xiloyannis, Anne Gehrig, Camille Varescon, Martina Rebeka Spiess, Serena Maggioni, Chiara Basla, Gleb Koginov, Florian Haufe, Marina D’Ercole, Cathal Harte, Sergio D. Hernandez-Charpak, Aurelie Paley, Manon Tschopp, Natacha Herrmann, Nadine Intering, Edeny Baaklini, Francesco Acquati, Charlotte Jacquet, Anne Watrin, Jimmy Ravier, Frédéric Merlos, Grégoire Eberlé, Katrien Van den Keybus, Hendrik Lambert, Henri Lorach, Rik Buschman, Nicholas Buse, Timothy Denison, Dino De Bon, Jaime E. Duarte, Robert Riener, Auke Ijspeert, Fabien Wagner, Sebastian Tobler, Léonie Asboth, Joachim von Zitzewitz, Jocelyne Bloch, Grégoire Courtine
{"title":"Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept","authors":"Nicolas Hankov, Miroslav Caban, Robin Demesmaeker, Margaux Roulet, Salif Komi, Michele Xiloyannis, Anne Gehrig, Camille Varescon, Martina Rebeka Spiess, Serena Maggioni, Chiara Basla, Gleb Koginov, Florian Haufe, Marina D’Ercole, Cathal Harte, Sergio D. Hernandez-Charpak, Aurelie Paley, Manon Tschopp, Natacha Herrmann, Nadine Intering, Edeny Baaklini, Francesco Acquati, Charlotte Jacquet, Anne Watrin, Jimmy Ravier, Frédéric Merlos, Grégoire Eberlé, Katrien Van den Keybus, Hendrik Lambert, Henri Lorach, Rik Buschman, Nicholas Buse, Timothy Denison, Dino De Bon, Jaime E. Duarte, Robert Riener, Auke Ijspeert, Fabien Wagner, Sebastian Tobler, Léonie Asboth, Joachim von Zitzewitz, Jocelyne Bloch, Grégoire Courtine","doi":"10.1126/scirobotics.adn5564","DOIUrl":null,"url":null,"abstract":"Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices. This neuroprosthesis is device agnostic and designed for seamless implementation by nonexpert users. Preliminary evaluations in participants with paralysis showed that the neuroprosthesis enabled well-organized patterns of muscle activity during robot-assisted walking and cycling. A proof-of-concept study suggested that robot-assisted rehabilitation augmented by the neuroprosthesis promoted sustained neurological improvements. Moreover, the neuroprosthesis augmented recreational walking and cycling activities outdoors. Future clinical trials will have to confirm these findings in a broader population.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"7 1","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1126/scirobotics.adn5564","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices. This neuroprosthesis is device agnostic and designed for seamless implementation by nonexpert users. Preliminary evaluations in participants with paralysis showed that the neuroprosthesis enabled well-organized patterns of muscle activity during robot-assisted walking and cycling. A proof-of-concept study suggested that robot-assisted rehabilitation augmented by the neuroprosthesis promoted sustained neurological improvements. Moreover, the neuroprosthesis augmented recreational walking and cycling activities outdoors. Future clinical trials will have to confirm these findings in a broader population.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
期刊最新文献
Monopedal robot branch-to-branch leaping and landing inspired by squirrel balance control Miniature deep-sea morphable robot with multimodal locomotion Bridging hard and soft: Mechanical metamaterials enable rigid torque transmission in soft robots Worm-like robot with integrated modular power. Social robots as conversational catalysts: Enhancing long-term human-human interaction at home
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1