Homan Kang, Seung Hun Park, Guliz Ersoy Ozmen, Won Hur, Jason Dinh, Haoran Wang, Vy Nguyen, Sung Ahn, Atsushi Yamashita, Wesley R. Stiles, Satoshi Kashiwagi, Kai Bao, Maged Henary, Hak Soo Choi
{"title":"Cartilage-targeting fluorophores for early detection of arthritis in the NIR-II window","authors":"Homan Kang, Seung Hun Park, Guliz Ersoy Ozmen, Won Hur, Jason Dinh, Haoran Wang, Vy Nguyen, Sung Ahn, Atsushi Yamashita, Wesley R. Stiles, Satoshi Kashiwagi, Kai Bao, Maged Henary, Hak Soo Choi","doi":"10.1016/j.chempr.2025.102481","DOIUrl":null,"url":null,"abstract":"Early diagnosis is crucial for the effective treatment of rheumatoid arthritis because continuing inflammation can lead to irreversible joint damage. However, current diagnostic methods lack tissue-specific guidelines to monitor the progressive course of degenerative joint diseases. Here, we demonstrate that cartilage-targeting fluorophores (CARFs) exhibit a remarkable cartilage-specific affinity and offer advanced imaging capabilities in the near-infrared II (NIR-II) window, characterized by minimal tissue scattering and negligible autofluorescence. CARFs show little to no toxicity, both <em>in vitro</em> (up to 100 μM) and <em>in vivo</em> (3 μmol/kg via intravenous injection), suggesting clinical potential. Furthermore, CARFs in the NIR-II window enable the precise visualization of cartilage lining, serving as a reliable diagnostic indicator for the early detection of arthritis in preclinical mouse models. CARFs are NIR fluorescence-emitting targeted contrast agents for prognostic imaging of joint tissue, with the potential to revolutionize applications in tissue engineering, joint surgery, and drug development for inflammatory diseases.","PeriodicalId":268,"journal":{"name":"Chem","volume":"87 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102481","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis is crucial for the effective treatment of rheumatoid arthritis because continuing inflammation can lead to irreversible joint damage. However, current diagnostic methods lack tissue-specific guidelines to monitor the progressive course of degenerative joint diseases. Here, we demonstrate that cartilage-targeting fluorophores (CARFs) exhibit a remarkable cartilage-specific affinity and offer advanced imaging capabilities in the near-infrared II (NIR-II) window, characterized by minimal tissue scattering and negligible autofluorescence. CARFs show little to no toxicity, both in vitro (up to 100 μM) and in vivo (3 μmol/kg via intravenous injection), suggesting clinical potential. Furthermore, CARFs in the NIR-II window enable the precise visualization of cartilage lining, serving as a reliable diagnostic indicator for the early detection of arthritis in preclinical mouse models. CARFs are NIR fluorescence-emitting targeted contrast agents for prognostic imaging of joint tissue, with the potential to revolutionize applications in tissue engineering, joint surgery, and drug development for inflammatory diseases.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.