Evandro C. R. Rosa, Eduardo I. Duzzioni, Rafael de Santiago
{"title":"Optimizing Gate Decomposition for High-Level Quantum Programming","authors":"Evandro C. R. Rosa, Eduardo I. Duzzioni, Rafael de Santiago","doi":"10.22331/q-2025-03-12-1659","DOIUrl":null,"url":null,"abstract":"This paper presents novel methods for optimizing multi-controlled quantum gates, which naturally arise in high-level quantum programming. Our primary approach involves rewriting $U(2)$ gates as $SU(2)$ gates, utilizing one auxiliary qubit for phase correction. This reduces the number of CNOT gates required to decompose any multi-controlled quantum gate from $O(n^2)$ to at most $32n$. Additionally, we can reduce the number of CNOTs for multi-controlled Pauli gates from $16n$ to $12n$ and propose an optimization to reduce the number of controlled gates in high-level quantum programming. We have implemented these optimizations in the Ket quantum programming platform and demonstrated significant reductions in the number of gates. For instance, for a Grover's algorithm layer with 114 qubits, we achieved a reduction in the number of CNOTs from 101,252 to 2,684. This reduction in the number of gates significantly impacts the execution time of quantum algorithms, thereby enhancing the feasibility of executing them on NISQ computers.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"56 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-12-1659","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents novel methods for optimizing multi-controlled quantum gates, which naturally arise in high-level quantum programming. Our primary approach involves rewriting $U(2)$ gates as $SU(2)$ gates, utilizing one auxiliary qubit for phase correction. This reduces the number of CNOT gates required to decompose any multi-controlled quantum gate from $O(n^2)$ to at most $32n$. Additionally, we can reduce the number of CNOTs for multi-controlled Pauli gates from $16n$ to $12n$ and propose an optimization to reduce the number of controlled gates in high-level quantum programming. We have implemented these optimizations in the Ket quantum programming platform and demonstrated significant reductions in the number of gates. For instance, for a Grover's algorithm layer with 114 qubits, we achieved a reduction in the number of CNOTs from 101,252 to 2,684. This reduction in the number of gates significantly impacts the execution time of quantum algorithms, thereby enhancing the feasibility of executing them on NISQ computers.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.