{"title":"Techniques for kinetic parameter estimation in free radical polymerization models","authors":"Lauren A Gibson, Kimberley B McAuley","doi":"10.1016/j.coche.2025.101117","DOIUrl":null,"url":null,"abstract":"<div><div>Free radical polymerization (FRP) systems can have many reactions, leading to many kinetic parameters. The most common method to obtain values for kinetic parameters is weighted-least squares estimation, which uses multiple types of measured responses. Error-in-variables model estimation is used when there is significant uncertainty in the model inputs. When FRP models have many unknown parameters, it is difficult to estimate them all uniquely, so modelers often resort to model simplification or subset selection methods for parameter estimation. The aim of this review is to describe the most common techniques that modelers use for kinetic parameter estimation in FRP models.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101117"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000280","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Free radical polymerization (FRP) systems can have many reactions, leading to many kinetic parameters. The most common method to obtain values for kinetic parameters is weighted-least squares estimation, which uses multiple types of measured responses. Error-in-variables model estimation is used when there is significant uncertainty in the model inputs. When FRP models have many unknown parameters, it is difficult to estimate them all uniquely, so modelers often resort to model simplification or subset selection methods for parameter estimation. The aim of this review is to describe the most common techniques that modelers use for kinetic parameter estimation in FRP models.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.