Three-dimensional seepage analysis for the tunnel in nonhomogeneous porous media with physics-informed deep learning

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2025-03-12 DOI:10.1016/j.enganabound.2025.106207
Shan Lin , Miao Dong , Hongming Luo , Hongwei Guo , Hong Zheng
{"title":"Three-dimensional seepage analysis for the tunnel in nonhomogeneous porous media with physics-informed deep learning","authors":"Shan Lin ,&nbsp;Miao Dong ,&nbsp;Hongming Luo ,&nbsp;Hongwei Guo ,&nbsp;Hong Zheng","doi":"10.1016/j.enganabound.2025.106207","DOIUrl":null,"url":null,"abstract":"<div><div>Tunnel engineering is one of the hot spots of research in the field of geotechnical engineering, and the seepage analysis of tunnels is an important research direction at present. In recent years, physics-informed deep learning based on priori fusion data has become a cross-disciplinary hotspot for solving forward and inverse problems based on partial differential equations (PDEs). In this paper, physics-informed deep learning (PIDL) is introduced to the solution of PDEs for Geotechnical Engineering problems. This paper builds relevant theoretical models and systematically discusses the issues associated with applying this method to the numerical simulation of tunnel seepage, starting from the mathematical theory of physics-informed deep learning. The results of this paper are compared with the analytical solution and the finite element method, and the generalization accuracy of the neural network is tested by replacing different boundary conditions, which verifies the feasibility of the physics-informed deep learning method for solving the seepage problem of tunnels with nonhomogeneous porous media. The results of several typical numerical examples show that the method has the advantages of meshless and refined simulation.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"175 ","pages":"Article 106207"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000955","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tunnel engineering is one of the hot spots of research in the field of geotechnical engineering, and the seepage analysis of tunnels is an important research direction at present. In recent years, physics-informed deep learning based on priori fusion data has become a cross-disciplinary hotspot for solving forward and inverse problems based on partial differential equations (PDEs). In this paper, physics-informed deep learning (PIDL) is introduced to the solution of PDEs for Geotechnical Engineering problems. This paper builds relevant theoretical models and systematically discusses the issues associated with applying this method to the numerical simulation of tunnel seepage, starting from the mathematical theory of physics-informed deep learning. The results of this paper are compared with the analytical solution and the finite element method, and the generalization accuracy of the neural network is tested by replacing different boundary conditions, which verifies the feasibility of the physics-informed deep learning method for solving the seepage problem of tunnels with nonhomogeneous porous media. The results of several typical numerical examples show that the method has the advantages of meshless and refined simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
Perfectly Matched Layer for meshless analysis of wave propagation in layered elastic-poroelastic half-space Multiphase Lagrangian Differencing Dynamics method with sharp interfaces Assessments and preventions of the damages and their modes in the second and third spans of the RC highway straight girder bridge under surface blast using the FEM-SPH coupling A polyhedral scaled boundary finite element method solving three-dimensional heat conduction problems Three-dimensional seepage analysis for the tunnel in nonhomogeneous porous media with physics-informed deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1