Geochemistry of cassiterite and skarn minerals as indicators for formation mechanism and fluid evolution of the newly discovered Jinshui skarn tin deposit in the East Kunlun orogenic belt, NW China

IF 3.2 2区 地球科学 Q1 GEOLOGY Ore Geology Reviews Pub Date : 2025-03-10 DOI:10.1016/j.oregeorev.2025.106541
Xing-Kai Zhang , Shao-Yong Jiang , Hui-Min Su , Wei Wang , Qinglin Xia , Yunpeng Liu , Shien Li
{"title":"Geochemistry of cassiterite and skarn minerals as indicators for formation mechanism and fluid evolution of the newly discovered Jinshui skarn tin deposit in the East Kunlun orogenic belt, NW China","authors":"Xing-Kai Zhang ,&nbsp;Shao-Yong Jiang ,&nbsp;Hui-Min Su ,&nbsp;Wei Wang ,&nbsp;Qinglin Xia ,&nbsp;Yunpeng Liu ,&nbsp;Shien Li","doi":"10.1016/j.oregeorev.2025.106541","DOIUrl":null,"url":null,"abstract":"<div><div>Discovery of the Jinshui skarn-type tin deposit marked the first instance of a tin deposit to be uncovered in the central segment of the East Kunlun Orogenic Belt (EKOB) in northwestern China. To determine the timing of tin mineralization and elucidate the progression of the ore-forming hydrothermal system, we conducted geochronology of cassiterite and trace element analysis on various minerals hosted in skarn ores. The U–Pb dating results of the cassiterite indicate that tin mineralization took place at 392.9 ± 5.8 Ma, which closely aligns with the syenogranite emplacement at 396.1 ± 2.1 Ma in the Jinshui deposit. This correlation suggests a temporal link between tin mineralization and granitic magmatism. The deposit is characterized by two generations of cassiterite, with trace element analyses consistently showing that the dark cathodoluminescent cores have relatively high W and U concentrations, whereas the bright rims are enriched in Sc, Ti, V, Zr, In, and Hf. Additionally, the Zr/Hf ratios confirm that the syenogranite was the source of the ore-forming fluids. During the prograde skarn stage, the ore-forming fluids maintained an equilibrium closed system. Initially, the ore-forming fluid experienced reducing conditions, characterized by a low water-to-rock (W/R) ratio and a neutral to slightly alkaline pH. This fluid subsequently evolved into an oxidizing fluid with an elevated W/R ratio and an acidic pH. During the retrograde skarn stage, the fluid continued to exhibit high levels of oxygen fugacity. As the mineralization process progressed from the oxide stage to the quartz-cassiterite-sulfide stage, the presence of cassiterite indicates that the ore-forming fluid experienced two increases in oxygen fugacity, and this fluctuation may be attributed to the mixing of external fluids. The post-collisional extensional environment provided the tectonic background for the formation of the Jinshui tin deposit. Magmas derived from mantle sources ascended, and partial melting of the felsic crustal materials led to the formation of the Jinshui syenogranite after differentiation. Skarn-type tin deposits formed at the favorable locations of the contact between the granite body and the Sn-rich Jinshuikou Group.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"179 ","pages":"Article 106541"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136825001015","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Discovery of the Jinshui skarn-type tin deposit marked the first instance of a tin deposit to be uncovered in the central segment of the East Kunlun Orogenic Belt (EKOB) in northwestern China. To determine the timing of tin mineralization and elucidate the progression of the ore-forming hydrothermal system, we conducted geochronology of cassiterite and trace element analysis on various minerals hosted in skarn ores. The U–Pb dating results of the cassiterite indicate that tin mineralization took place at 392.9 ± 5.8 Ma, which closely aligns with the syenogranite emplacement at 396.1 ± 2.1 Ma in the Jinshui deposit. This correlation suggests a temporal link between tin mineralization and granitic magmatism. The deposit is characterized by two generations of cassiterite, with trace element analyses consistently showing that the dark cathodoluminescent cores have relatively high W and U concentrations, whereas the bright rims are enriched in Sc, Ti, V, Zr, In, and Hf. Additionally, the Zr/Hf ratios confirm that the syenogranite was the source of the ore-forming fluids. During the prograde skarn stage, the ore-forming fluids maintained an equilibrium closed system. Initially, the ore-forming fluid experienced reducing conditions, characterized by a low water-to-rock (W/R) ratio and a neutral to slightly alkaline pH. This fluid subsequently evolved into an oxidizing fluid with an elevated W/R ratio and an acidic pH. During the retrograde skarn stage, the fluid continued to exhibit high levels of oxygen fugacity. As the mineralization process progressed from the oxide stage to the quartz-cassiterite-sulfide stage, the presence of cassiterite indicates that the ore-forming fluid experienced two increases in oxygen fugacity, and this fluctuation may be attributed to the mixing of external fluids. The post-collisional extensional environment provided the tectonic background for the formation of the Jinshui tin deposit. Magmas derived from mantle sources ascended, and partial melting of the felsic crustal materials led to the formation of the Jinshui syenogranite after differentiation. Skarn-type tin deposits formed at the favorable locations of the contact between the granite body and the Sn-rich Jinshuikou Group.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ore Geology Reviews
Ore Geology Reviews 地学-地质学
CiteScore
6.50
自引率
27.30%
发文量
546
审稿时长
22.9 weeks
期刊介绍: Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.
期刊最新文献
Editorial Board Dual length-scale modelling of the formation mechanism relevant to the Caixiashan Pb-Zn deposit, Xinjiang, China: Effects of regional-model bottom boundary-conditions on mineralization patterns Shallow crustal velocity structure beneath the Xiangshan and Yuhuashan volcanic basins in South China: Implications for the metallogenic setting of the volcanic-related uranium deposit Comment on “Mineralization age of the Xiangshan uranium ore field, South China redefined by hydrothermal apatite U-Pb geochronology” by Wang et al., (Ore Geology Reviews, 2023, https://doi.org/10.1016/j.oregeorev.2023.105586) Geological characteristics, mechanism, and metallogenic model of the Benbatu uranium deposit, Bayingobi basin, North China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1