Nitrogen and organic matter managements improve rice yield and affect greenhouse gas emissions in China’s rice-wheat system

IF 5.6 1区 农林科学 Q1 AGRONOMY Field Crops Research Pub Date : 2025-03-12 DOI:10.1016/j.fcr.2025.109838
Li Zhang , Feng Zhang , Kaiping Zhang , Yue Wang , Evgenios Agathokleous , Chao Fang , Zhike Zhang , Haiyan Wei , Zhongyang Huo
{"title":"Nitrogen and organic matter managements improve rice yield and affect greenhouse gas emissions in China’s rice-wheat system","authors":"Li Zhang ,&nbsp;Feng Zhang ,&nbsp;Kaiping Zhang ,&nbsp;Yue Wang ,&nbsp;Evgenios Agathokleous ,&nbsp;Chao Fang ,&nbsp;Zhike Zhang ,&nbsp;Haiyan Wei ,&nbsp;Zhongyang Huo","doi":"10.1016/j.fcr.2025.109838","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Mineral nitrogen (N) management and organic matter management in the paddy fields directly affect yield and soil greenhouse gas (GHG) emissions in the rice-wheat rotation system of China. However, comprehensive research on the combined impacts of these two practices remains insufficient, and there is a lack of quantitative analyses on a large regional scale as well as identification of the main drivers.</div></div><div><h3>Objective</h3><div>This study aimed to elucidate the impact of mineral N management and organic matter management on rice yield and global warming potential (GWP) and their spatial distribution patterns, and to investigate influential factors.</div></div><div><h3>Methods</h3><div>We combined machine learning algorithms based on meta-analysis to assess the effect of mineral N management (synthetic N fertilizer, slow-/controlled- release fertilizer) and organic matter management (organic fertilizer, biochar amendment, and straw return) on rice yield and GHG in the rice-wheat system by compiling 163 peer-reviewed journal articles and high-resolution multi-source databases in China.</div></div><div><h3>Results</h3><div>Mineral N management significantly increased rice yield (412 %) and N<sub>2</sub>O (162.3 %), and reduced GHG emissions intensity (GHGI; 20.1 %). Organic matter management increased CH<sub>4</sub>, GWP, and GHGI by 74.4 %, 60.8 %, and 55.1 %, respectively. Machine learning (random forest (RF), support vector machine, multiple layer perceptron, and gradient boosting machine) suggested that RF was the optimal method for predicting rice yield and GHG (R<sup>2</sup> = 0.43–0.90). The spatial distribution indicated that mineral N management boosted rice yield and N<sub>2</sub>O while reducing GHGI, especially in the Middle-lower Yangtze River (MLY) region, by 37.6 %, 277 %, and 25.2 %, respectively. Structural equation modeling and RF analysis revealed that field management practices and edaphic factors had major contributions to rice yield, while climatic factors were positively with CH<sub>4</sub> and N<sub>2</sub>O emissions.</div></div><div><h3>Implications</h3><div>Our findings provide insights into the importance of inorganic and organic managements to ensure food security and environmental sustainability, thereby contributing to the promotion of sustainable rice production.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"326 ","pages":"Article 109838"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429025001030","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

Mineral nitrogen (N) management and organic matter management in the paddy fields directly affect yield and soil greenhouse gas (GHG) emissions in the rice-wheat rotation system of China. However, comprehensive research on the combined impacts of these two practices remains insufficient, and there is a lack of quantitative analyses on a large regional scale as well as identification of the main drivers.

Objective

This study aimed to elucidate the impact of mineral N management and organic matter management on rice yield and global warming potential (GWP) and their spatial distribution patterns, and to investigate influential factors.

Methods

We combined machine learning algorithms based on meta-analysis to assess the effect of mineral N management (synthetic N fertilizer, slow-/controlled- release fertilizer) and organic matter management (organic fertilizer, biochar amendment, and straw return) on rice yield and GHG in the rice-wheat system by compiling 163 peer-reviewed journal articles and high-resolution multi-source databases in China.

Results

Mineral N management significantly increased rice yield (412 %) and N2O (162.3 %), and reduced GHG emissions intensity (GHGI; 20.1 %). Organic matter management increased CH4, GWP, and GHGI by 74.4 %, 60.8 %, and 55.1 %, respectively. Machine learning (random forest (RF), support vector machine, multiple layer perceptron, and gradient boosting machine) suggested that RF was the optimal method for predicting rice yield and GHG (R2 = 0.43–0.90). The spatial distribution indicated that mineral N management boosted rice yield and N2O while reducing GHGI, especially in the Middle-lower Yangtze River (MLY) region, by 37.6 %, 277 %, and 25.2 %, respectively. Structural equation modeling and RF analysis revealed that field management practices and edaphic factors had major contributions to rice yield, while climatic factors were positively with CH4 and N2O emissions.

Implications

Our findings provide insights into the importance of inorganic and organic managements to ensure food security and environmental sustainability, thereby contributing to the promotion of sustainable rice production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Field Crops Research
Field Crops Research 农林科学-农艺学
CiteScore
9.60
自引率
12.10%
发文量
307
审稿时长
46 days
期刊介绍: Field Crops Research is an international journal publishing scientific articles on: √ experimental and modelling research at field, farm and landscape levels on temperate and tropical crops and cropping systems, with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.
期刊最新文献
Nitrogen and organic matter managements improve rice yield and affect greenhouse gas emissions in China’s rice-wheat system Regulation of subsurface drip fertigation on nitrogen cycling soil microorganisms and N2O and NH3 emissions from aeolian sandy soil in alfalfa field in temperate arid regions How do integrated agronomic practices enhance sunflower productivity and stability in saline-alkali soils of arid regions? Evidence from China Temporal and spatial patterns of N2O emissions in maize/legume strip intercropping: Effects of straw incorporation and crop interactions Engineered silicate-solubilizing bacterial community alleviates nutrient stress in field-grown maize by enhancing silicon uptake and optimizing rhizosphere microecology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1