Wastewater treatment through a hybrid electrocoagulation and electro-Fenton process with a porous graphite air-diffusion cathode

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2025-03-06 DOI:10.1016/j.cep.2025.110258
Ziad T. Alismaeel, Osama F. Saeed, Ali H. Abbar
{"title":"Wastewater treatment through a hybrid electrocoagulation and electro-Fenton process with a porous graphite air-diffusion cathode","authors":"Ziad T. Alismaeel,&nbsp;Osama F. Saeed,&nbsp;Ali H. Abbar","doi":"10.1016/j.cep.2025.110258","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater from hospitals is a major source of pollution, and its treatment to protect the environment is a challenge. Different traditional methods have been applied to treat hospital wastewater (HW). Recently, hybrid processes, such as electrocoagulation (EC) with the electro-Fenton (EF) process, have been found to outperform traditional methods in terms of their high removal rate, low sludge generation and energy consumption and environmental sustainability. Herein, a combined EF process integrated with EC was successfully applied to reduce the chemical O demand (COD) of HW. A batch tubular electrochemical reactor composed of a microporous graphite air diffusion cathode and a hollow cylinder Al anode was used as a new design to remove pollutants from HW. Response surface methodology was adopted to explore the effects of operating factors, which were represented by current density, Fe<sup>2+</sup> concentration and time, on COD removal and identify their interactions. The best operating conditions were a current density of 20 mA/cm<sup>2</sup>, an Fe<sup>2+</sup> concentration of 6 mM and a reaction time of 63 min. These conditions yielded a COD removal efficiency (RE %) of 93.5 % with an energy consumption of 18.325 kWh/kg COD. Time had the main effect on the RE % due to the synergistic effect of EC and EF. The hybrid system had higher efficiency and lower energy consumption and sludge production than individual EC or EF. Therefore, combining EC with EF could be a promising approach for the treatment of HW.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"212 ","pages":"Article 110258"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001072","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater from hospitals is a major source of pollution, and its treatment to protect the environment is a challenge. Different traditional methods have been applied to treat hospital wastewater (HW). Recently, hybrid processes, such as electrocoagulation (EC) with the electro-Fenton (EF) process, have been found to outperform traditional methods in terms of their high removal rate, low sludge generation and energy consumption and environmental sustainability. Herein, a combined EF process integrated with EC was successfully applied to reduce the chemical O demand (COD) of HW. A batch tubular electrochemical reactor composed of a microporous graphite air diffusion cathode and a hollow cylinder Al anode was used as a new design to remove pollutants from HW. Response surface methodology was adopted to explore the effects of operating factors, which were represented by current density, Fe2+ concentration and time, on COD removal and identify their interactions. The best operating conditions were a current density of 20 mA/cm2, an Fe2+ concentration of 6 mM and a reaction time of 63 min. These conditions yielded a COD removal efficiency (RE %) of 93.5 % with an energy consumption of 18.325 kWh/kg COD. Time had the main effect on the RE % due to the synergistic effect of EC and EF. The hybrid system had higher efficiency and lower energy consumption and sludge production than individual EC or EF. Therefore, combining EC with EF could be a promising approach for the treatment of HW.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Study on internal circulation patterns and heat transfer characteristics of gas-liquid Taylor flow in a gradually expanding microchannel Numerical simulation of the mixing performance of a novel SAR micromixer with hollow mixing chamber and diverse connecting channel Comprehensive analysis of multiple factors influencing droplet coalescence by orthogonal simulation: A molecular dynamics study Facile preparation and characterization of α-aluminum oxide particles by ultrasonic spray pyrolysis Application of the approximate mapping method and validation of the mixing evaluation method based on fractal dimension in an oscillatory baffled reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1