Ayobami Olayemi Oladejo , Sebastian Gruber , Petra Foerst
{"title":"Applications of non-invasive measuring techniques of internal changes during drying of food products","authors":"Ayobami Olayemi Oladejo , Sebastian Gruber , Petra Foerst","doi":"10.1016/j.jfoodeng.2025.112558","DOIUrl":null,"url":null,"abstract":"<div><div>The internal information (microstructure and moisture distribution) of food products during drying is useful for designing and optimizing the process control of drying conditions. Conventional measuring techniques like scanning electron microscopy (SEM), light microscopy (LM), confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) have been widely used to investigate the internal and structural characteristics of dried agricultural products. However, these conventional measuring techniques have some limitations, which include the destruction of the food samples, sample preparations, and the development of artifacts. In order to overcome the limitations of conventional measuring techniques, non-invasive measuring techniques like X-ray microcomputed tomography (XCT), low-field nuclear magnetic resonance (LF-NMR), magnetic resonance imaging (MRI) and neutron imaging have been used to investigate the internal changes of agricultural products during drying in ex-situ and in-situ. However, the use of these non-invasive measuring techniques has yet to gain wide acceptance and utilization in the drying of agricultural products. Therefore, the purpose of this paper is to review the applications, advantages and limitations of XCT, LF-NMR/MRI and neutron imaging in the drying of agricultural products. The information contained in this review would enhance further developments and applications of these non-invasive measuring techniques in the drying of agricultural products. The review also shows that the non-invasive techniques could provide information on the drying properties (drying kinetics, porosity, pore size, wall thickness, moisture profile, local water distribution, shrinkage and moisture distribution) of food products subjected to drying in ex-situ and in some cases in in-situ.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"396 ","pages":"Article 112558"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000937","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The internal information (microstructure and moisture distribution) of food products during drying is useful for designing and optimizing the process control of drying conditions. Conventional measuring techniques like scanning electron microscopy (SEM), light microscopy (LM), confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) have been widely used to investigate the internal and structural characteristics of dried agricultural products. However, these conventional measuring techniques have some limitations, which include the destruction of the food samples, sample preparations, and the development of artifacts. In order to overcome the limitations of conventional measuring techniques, non-invasive measuring techniques like X-ray microcomputed tomography (XCT), low-field nuclear magnetic resonance (LF-NMR), magnetic resonance imaging (MRI) and neutron imaging have been used to investigate the internal changes of agricultural products during drying in ex-situ and in-situ. However, the use of these non-invasive measuring techniques has yet to gain wide acceptance and utilization in the drying of agricultural products. Therefore, the purpose of this paper is to review the applications, advantages and limitations of XCT, LF-NMR/MRI and neutron imaging in the drying of agricultural products. The information contained in this review would enhance further developments and applications of these non-invasive measuring techniques in the drying of agricultural products. The review also shows that the non-invasive techniques could provide information on the drying properties (drying kinetics, porosity, pore size, wall thickness, moisture profile, local water distribution, shrinkage and moisture distribution) of food products subjected to drying in ex-situ and in some cases in in-situ.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.