{"title":"The Graph Fractional Fourier Transform in Hilbert Space","authors":"Yu Zhang;Bing-Zhao Li","doi":"10.1109/TSIPN.2025.3540714","DOIUrl":null,"url":null,"abstract":"Graph signal processing (GSP) leverages the inherent signal structure within graphs to extract high-dimensional data without relying on translation invariance. It has emerged as a crucial tool across multiple fields, including learning and processing of various networks, data analysis, and image processing. In this paper, we introduce the graph fractional Fourier transform in Hilbert space (HGFRFT), which provides additional fractional analysis tools for generalized GSP by extending Hilbert space and vertex domain Fourier analysis to fractional order. First, we establish that the proposed HGFRFT extends traditional GSP, accommodates graphs on continuous domains, and facilitates joint time-vertex domain transform while adhering to critical properties such as additivity, commutativity, and invertibility. Second, to process generalized graph signals in the fractional domain, we explore the theory behind filtering and sampling of signals in the fractional domain. Finally, our simulations and numerical experiments substantiate the advantages and enhancements yielded by the HGFRFT.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"242-257"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10884789/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Graph signal processing (GSP) leverages the inherent signal structure within graphs to extract high-dimensional data without relying on translation invariance. It has emerged as a crucial tool across multiple fields, including learning and processing of various networks, data analysis, and image processing. In this paper, we introduce the graph fractional Fourier transform in Hilbert space (HGFRFT), which provides additional fractional analysis tools for generalized GSP by extending Hilbert space and vertex domain Fourier analysis to fractional order. First, we establish that the proposed HGFRFT extends traditional GSP, accommodates graphs on continuous domains, and facilitates joint time-vertex domain transform while adhering to critical properties such as additivity, commutativity, and invertibility. Second, to process generalized graph signals in the fractional domain, we explore the theory behind filtering and sampling of signals in the fractional domain. Finally, our simulations and numerical experiments substantiate the advantages and enhancements yielded by the HGFRFT.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.