Light-activated antimicrobial coatings: the great potential of organic photosensitizers

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-03-13 DOI:10.1039/D5RA00272A
Karolina Socha, Ivan Gusev, Patryk Mroczko and Agata Blacha-Grzechnik
{"title":"Light-activated antimicrobial coatings: the great potential of organic photosensitizers","authors":"Karolina Socha, Ivan Gusev, Patryk Mroczko and Agata Blacha-Grzechnik","doi":"10.1039/D5RA00272A","DOIUrl":null,"url":null,"abstract":"<p >Contamination of inanimate surfaces with microorganisms is considered one of the routes for transmission of pathogens, which is a matter of concern not only in healthcare-related facilities, but also in public areas. Durable antimicrobial coatings have emerged as the one of most promising strategies for reducing the accumulation of microorganisms on high-touch surfaces. Light-activated antimicrobial layers are of particular interest for such a purpose, as they generate singlet oxygen and other reactive oxygen species that are effective against a broad spectrum of bacteria, viruses, and fungi. In this review, the antimicrobial coatings containing organic photosensitizers are discussed, focusing on the recent advances in the strategies for PSs' immobilization on solid surfaces. The review attempts to assess the advantages and limitations of those systems, and the challenges that still need to be overcome.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 10","pages":" 7905-7925"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00272a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00272a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Contamination of inanimate surfaces with microorganisms is considered one of the routes for transmission of pathogens, which is a matter of concern not only in healthcare-related facilities, but also in public areas. Durable antimicrobial coatings have emerged as the one of most promising strategies for reducing the accumulation of microorganisms on high-touch surfaces. Light-activated antimicrobial layers are of particular interest for such a purpose, as they generate singlet oxygen and other reactive oxygen species that are effective against a broad spectrum of bacteria, viruses, and fungi. In this review, the antimicrobial coatings containing organic photosensitizers are discussed, focusing on the recent advances in the strategies for PSs' immobilization on solid surfaces. The review attempts to assess the advantages and limitations of those systems, and the challenges that still need to be overcome.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Low-dielectric benzocyclobutenyl polysiloxane resin: spatial structure design and photosensitive patterning performance† Non-enzymatic dopamine detection using iron doped ZIF-8-based electrochemical sensor Light-activated antimicrobial coatings: the great potential of organic photosensitizers Tailoring alginate nanoparticles: influence of reverse micelle templates on structure, size, and encapsulation properties† Green synthesis of carbon quantum dots from nutshells for enhanced performance in dye-sensitized solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1