Green synthesis of carbon quantum dots from nutshells for enhanced performance in dye-sensitized solar cells

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-03-13 DOI:10.1039/D4RA08649J
Yang Yu, Yuxia Ouyang, Fei Xu, Tiefeng Wang, Xiaoyan Wei, Tongtong Wang and Yi Yao
{"title":"Green synthesis of carbon quantum dots from nutshells for enhanced performance in dye-sensitized solar cells","authors":"Yang Yu, Yuxia Ouyang, Fei Xu, Tiefeng Wang, Xiaoyan Wei, Tongtong Wang and Yi Yao","doi":"10.1039/D4RA08649J","DOIUrl":null,"url":null,"abstract":"<p >This study presents a sustainable approach to large scale synthesis of carbon quantum dots (CQDs) from nutshells, a widely available waste from biomass, using hydrogen peroxide (H<small><sub>2</sub></small>O) as the oxidizing agent in a hydrothermal process. The conditions of synthesis, including concentration of H<small><sub>2</sub></small>O<small><sub>2</sub></small>, reaction temperature and time, have been systematically optimized. The results show that optimal conditions include a concentration of 2.5% H<small><sub>2</sub></small>O<small><sub>2</sub></small>, a reaction temperature of 180 °C and a reaction time of 12 hours. The obtained CQDs have an average size of 3 nm and excellent fluorescence. The 2 L Parr reactor has been used to increase the production process and make it more viable for industrial applications. By-products of the reaction, including gas, liquid and solid residues, have been analyzed to understand the distribution of carbon. In addition, CQDs have been incorporated in dye-sensitive solar cells (DSSCs) where they have significantly improved the photovoltaic performance, with increased current density and overall efficiency. This work highlights the potential of biomass-based CQDs for the sustainable production of nanomaterials and for energy conversion applications, and offers a scalable and environmentally friendly alternative to synthesis of CQDs.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 10","pages":" 7938-7947"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08649j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08649j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a sustainable approach to large scale synthesis of carbon quantum dots (CQDs) from nutshells, a widely available waste from biomass, using hydrogen peroxide (H2O) as the oxidizing agent in a hydrothermal process. The conditions of synthesis, including concentration of H2O2, reaction temperature and time, have been systematically optimized. The results show that optimal conditions include a concentration of 2.5% H2O2, a reaction temperature of 180 °C and a reaction time of 12 hours. The obtained CQDs have an average size of 3 nm and excellent fluorescence. The 2 L Parr reactor has been used to increase the production process and make it more viable for industrial applications. By-products of the reaction, including gas, liquid and solid residues, have been analyzed to understand the distribution of carbon. In addition, CQDs have been incorporated in dye-sensitive solar cells (DSSCs) where they have significantly improved the photovoltaic performance, with increased current density and overall efficiency. This work highlights the potential of biomass-based CQDs for the sustainable production of nanomaterials and for energy conversion applications, and offers a scalable and environmentally friendly alternative to synthesis of CQDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Low-dielectric benzocyclobutenyl polysiloxane resin: spatial structure design and photosensitive patterning performance† Highly sensitive evanescent wave SERS probe based on exposed-core optical fibers and its application† Optimizing the white light emission in the solid state isatin and thiazole based molecular hybrids by introduction of variety of substituents on isatin and thiazole ring systems† Quantifying how the cis/trans ratio of N,N-dimethyl-3,5-dimethylpiperidinium hydroxide impacts the growth kinetics, composition and local structure of SSZ-39† Non-enzymatic dopamine detection using iron doped ZIF-8-based electrochemical sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1