Effective Hydrogen Evolution of Nickel–Molybdenum–Phosphide Electrodeposited Nickel Foam Electrode

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2025-03-12 DOI:10.1007/s10562-025-04980-3
Yi Xiong, Wei Zeng, Azmain Akib Akash, Yun Tang, Dong Wei, Huihong Liu, Sakil Mahmud
{"title":"Effective Hydrogen Evolution of Nickel–Molybdenum–Phosphide Electrodeposited Nickel Foam Electrode","authors":"Yi Xiong,&nbsp;Wei Zeng,&nbsp;Azmain Akib Akash,&nbsp;Yun Tang,&nbsp;Dong Wei,&nbsp;Huihong Liu,&nbsp;Sakil Mahmud","doi":"10.1007/s10562-025-04980-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an electrocatalyst composed of nickel-molybdenum-phosphide (NiMoP) supported on nickel foam (NiF), which has been synthesized using a straightforward two-step electrodeposition method intended for enhancing the efficiency of the hydrogen evolution reaction (HER) in alkaline environments. The addition of Mo and P, in contrast to traditional Ni-based catalysts, creates a synergistic electronic effect that considerably improves HER kinetics. The enhanced NiMoP/NiF catalyst demonstrates an impressively low overpotential of 171 mV at 10 mA cm⁻² and 376 mV at 100 mA․cm⁻², surpassing the performance of Ni/NiF (η<sub>10</sub> = 229 mV) and NiMo/NiF (η<sub>10</sub> = 181 mV). In comparison to current NiMoP systems, our catalyst exhibits superior catalytic activity, stability, and charge transfer efficiency. The electrochemical analysis indicates a Tafel slope of 119.98 mV․dec⁻¹, which supports a Volmer-controlled hydrogen evolution reaction mechanism characterized by enhanced water dissociation. The structural and compositional analysis demonstrates that Mo improves the electronic structure of Ni, whereas P increases water affinity and electrochemical surface area (C<sub>dl</sub> = 3.18 mF·cm⁻²), which is almost four times higher than that of pristine NiF. The catalyst exhibits remarkable stability throughout 2000 cycles and shows reliable performance in multi-step chronopotentiometry evaluations. This study presents an economical, long-lasting, and scalable electrocatalyst for hydrogen evolution reaction, serving as a viable substitute for noble-metal-based systems in the pursuit of sustainable hydrogen production.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04980-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an electrocatalyst composed of nickel-molybdenum-phosphide (NiMoP) supported on nickel foam (NiF), which has been synthesized using a straightforward two-step electrodeposition method intended for enhancing the efficiency of the hydrogen evolution reaction (HER) in alkaline environments. The addition of Mo and P, in contrast to traditional Ni-based catalysts, creates a synergistic electronic effect that considerably improves HER kinetics. The enhanced NiMoP/NiF catalyst demonstrates an impressively low overpotential of 171 mV at 10 mA cm⁻² and 376 mV at 100 mA․cm⁻², surpassing the performance of Ni/NiF (η10 = 229 mV) and NiMo/NiF (η10 = 181 mV). In comparison to current NiMoP systems, our catalyst exhibits superior catalytic activity, stability, and charge transfer efficiency. The electrochemical analysis indicates a Tafel slope of 119.98 mV․dec⁻¹, which supports a Volmer-controlled hydrogen evolution reaction mechanism characterized by enhanced water dissociation. The structural and compositional analysis demonstrates that Mo improves the electronic structure of Ni, whereas P increases water affinity and electrochemical surface area (Cdl = 3.18 mF·cm⁻²), which is almost four times higher than that of pristine NiF. The catalyst exhibits remarkable stability throughout 2000 cycles and shows reliable performance in multi-step chronopotentiometry evaluations. This study presents an economical, long-lasting, and scalable electrocatalyst for hydrogen evolution reaction, serving as a viable substitute for noble-metal-based systems in the pursuit of sustainable hydrogen production.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Insight into the Role of Defect CN Layer in Enhanced Catalysis of Peroxymonosulfate on Magnetic Cobalt Carbocatalyst for Phenol Degradation Comparative In Silico Structural Analysis of PHA Synthases from industrially Prominent PHA Producers Platinum Nanoparticles Loaded on Ta2O5/MWCNTs to Improve Methanol Electrooxidation Activity Graphitic Nature Governs CO2 Hydrogenation Reactions on Platinum@Carbon Nanocomposites Polymer Polyaniline Modified Bi24O31Br10 for Promoting Photocatalytic N2 Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1