Deciphering gypsum reuse through green composites development and the effect of three different bioplasticizers on their properties

IF 2.4 3区 化学 Q3 POLYMER SCIENCE Iranian Polymer Journal Pub Date : 2024-10-15 DOI:10.1007/s13726-024-01393-8
Grecia G. Colina, Alana G. Souza, Derval S. Rosa, Éder B. da Silveira, Ticiane S. Valera, Hélio Wiebeck
{"title":"Deciphering gypsum reuse through green composites development and the effect of three different bioplasticizers on their properties","authors":"Grecia G. Colina,&nbsp;Alana G. Souza,&nbsp;Derval S. Rosa,&nbsp;Éder B. da Silveira,&nbsp;Ticiane S. Valera,&nbsp;Hélio Wiebeck","doi":"10.1007/s13726-024-01393-8","DOIUrl":null,"url":null,"abstract":"<div><p>Starting from post-consumer gypsum, green composites have been produced by melt-blending polylactic acid (PLA), anhydrous calcium sulfate (CaSO<sub>4</sub>) filler, and bioplasticizers (coconut oil, cardanol, and epoxidized soybean oil) to solve the actual problem of poor performance and low production efficiency of biocomposites—such as poor properties and tendency to agglomerate. The dehydration of gypsum residues was studied by grinding and calcining them at 500 °C for 1 h and 3 h, and it was observed that only the sample calcined for 3 h (GR3) was completely dehydrated. The composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and mechanical tests of tensile, flexural, and impact strength. The results showed that the gypsum fillers increased PLA’s toughness, and the compositions with coconut oil (PLA–RG3–COC) and epoxidized soybean oil (PLA–RG3–ESO) obtained increases in stiffness and toughness, observed by changes in Young’s modulus (from 2 up to 2.5 GPa) and strain at break (from 3 up to 40%), respectively. Gypsum fillers promoted the shift of degradation temperature for higher temperatures (~ 360 °C), and the addition of the bioplasticizers slightly influenced the thermal stability of the composites. A plasticizing effect on the decreasing glass transition temperature of the composites was observed with the addition of coconut oil, cardanol, and epoxidized soybean oil. The developed composites cover new advanced materials to revolutionize conventional PLA-residue composites, bolster sustainability, and enhance their applicability.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"34 4","pages":"517 - 530"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01393-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Starting from post-consumer gypsum, green composites have been produced by melt-blending polylactic acid (PLA), anhydrous calcium sulfate (CaSO4) filler, and bioplasticizers (coconut oil, cardanol, and epoxidized soybean oil) to solve the actual problem of poor performance and low production efficiency of biocomposites—such as poor properties and tendency to agglomerate. The dehydration of gypsum residues was studied by grinding and calcining them at 500 °C for 1 h and 3 h, and it was observed that only the sample calcined for 3 h (GR3) was completely dehydrated. The composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and mechanical tests of tensile, flexural, and impact strength. The results showed that the gypsum fillers increased PLA’s toughness, and the compositions with coconut oil (PLA–RG3–COC) and epoxidized soybean oil (PLA–RG3–ESO) obtained increases in stiffness and toughness, observed by changes in Young’s modulus (from 2 up to 2.5 GPa) and strain at break (from 3 up to 40%), respectively. Gypsum fillers promoted the shift of degradation temperature for higher temperatures (~ 360 °C), and the addition of the bioplasticizers slightly influenced the thermal stability of the composites. A plasticizing effect on the decreasing glass transition temperature of the composites was observed with the addition of coconut oil, cardanol, and epoxidized soybean oil. The developed composites cover new advanced materials to revolutionize conventional PLA-residue composites, bolster sustainability, and enhance their applicability.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Polymer Journal
Iranian Polymer Journal 化学-高分子科学
CiteScore
4.90
自引率
9.70%
发文量
107
审稿时长
2.8 months
期刊介绍: Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.
期刊最新文献
Mechanical, morphological, and thermal properties of polypropylene/montmorillonite polymer composite foam Biocomposites derived from esterified rice starch reinforced with microcellulose fiber Deciphering gypsum reuse through green composites development and the effect of three different bioplasticizers on their properties The pore size effect on the degradation, tensile properties and cell viability of polycaprolactone/starch scaffold: experimental study Halogen-free polymer composites: advancing sustainable and high-performance flexible electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1