Plasma Extracellular Matrix Protein 2 Level as a Predictive Biomarker for Rupture of Small Intracranial Aneurysms

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Neuroscience Pub Date : 2025-03-13 DOI:10.1007/s12031-024-02305-4
Chenchen Wang, Yuwei Han, Da Huo, Xiaoming Li, Guobiao Liang
{"title":"Plasma Extracellular Matrix Protein 2 Level as a Predictive Biomarker for Rupture of Small Intracranial Aneurysms","authors":"Chenchen Wang,&nbsp;Yuwei Han,&nbsp;Da Huo,&nbsp;Xiaoming Li,&nbsp;Guobiao Liang","doi":"10.1007/s12031-024-02305-4","DOIUrl":null,"url":null,"abstract":"<div><p>As the neuroimaging technology improves, the detection rate of unruptured intracranial aneurysms (UIA) is gradually increasing. However, there is currently no effective means to evaluate and predict the risk of rupture for small intracranial aneurysm (sIA, diameter &lt; 7 mm). We previously identified extracellular matrix protein 2 (ECM2) as a potential candidate biomarker for predicting intracranial aneurysm (IA) rupture through iTRAQ combined with LC–MS/MS protein quantification technology, so this study aimed to further validate the ability of plasma ECM2 expression levels to predict IA rupture. This prospective, observational, single-center cohort study enrolled 322 individuals with ruptured intracranial aneurysm (RIA, <i>N</i> = 123), UIA (<i>N</i> = 89), traumatic subarachnoid hemorrhage (tSAH, <i>N</i> = 55), or healthy controls (HC, <i>N</i> = 55). ECM2 plasma levels were quantified using enzyme-linked immunosorbent assay (ELISA). The Spearman rank correlation analysis was employed to examine the relationship between variables. Independent risk factors of sIA rupture were identified using logistic regression analysis. The ROC curve assessed the predictive capability for sIA rupture. Plasma ECM2 was notably higher in RIA patients than in UIA, tSAH, and HC groups. Plasma ECM2 levels showed no significant difference among the asymptomatic UIA, HC, and tSAH groups. There was also no significant difference in plasma ECM2 levels between symptomatic UIA patients and RIA patients. Furthermore, the plasma ECM2 level was closely related to hypertension history in sIA patients. ECM2 plasma level was an independent risk factor for sIA rupture. The plasma ECM2 cutoff level for predicting IA rupture was determined to be 1540.67 pg/ml. The combination of ECM2 levels and aneurysm location increased predictive accuracy (AUC = 0.828, sensitivity 87.0%, specificity 68.8%, accuracy 83.2%), surpassing the performance of PHASES and ELPASS scores. ECM2 could potentially act as an early warning biomarker for predicting the rupture of sIAs.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02305-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As the neuroimaging technology improves, the detection rate of unruptured intracranial aneurysms (UIA) is gradually increasing. However, there is currently no effective means to evaluate and predict the risk of rupture for small intracranial aneurysm (sIA, diameter < 7 mm). We previously identified extracellular matrix protein 2 (ECM2) as a potential candidate biomarker for predicting intracranial aneurysm (IA) rupture through iTRAQ combined with LC–MS/MS protein quantification technology, so this study aimed to further validate the ability of plasma ECM2 expression levels to predict IA rupture. This prospective, observational, single-center cohort study enrolled 322 individuals with ruptured intracranial aneurysm (RIA, N = 123), UIA (N = 89), traumatic subarachnoid hemorrhage (tSAH, N = 55), or healthy controls (HC, N = 55). ECM2 plasma levels were quantified using enzyme-linked immunosorbent assay (ELISA). The Spearman rank correlation analysis was employed to examine the relationship between variables. Independent risk factors of sIA rupture were identified using logistic regression analysis. The ROC curve assessed the predictive capability for sIA rupture. Plasma ECM2 was notably higher in RIA patients than in UIA, tSAH, and HC groups. Plasma ECM2 levels showed no significant difference among the asymptomatic UIA, HC, and tSAH groups. There was also no significant difference in plasma ECM2 levels between symptomatic UIA patients and RIA patients. Furthermore, the plasma ECM2 level was closely related to hypertension history in sIA patients. ECM2 plasma level was an independent risk factor for sIA rupture. The plasma ECM2 cutoff level for predicting IA rupture was determined to be 1540.67 pg/ml. The combination of ECM2 levels and aneurysm location increased predictive accuracy (AUC = 0.828, sensitivity 87.0%, specificity 68.8%, accuracy 83.2%), surpassing the performance of PHASES and ELPASS scores. ECM2 could potentially act as an early warning biomarker for predicting the rupture of sIAs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
期刊最新文献
Plasma Extracellular Matrix Protein 2 Level as a Predictive Biomarker for Rupture of Small Intracranial Aneurysms Comprehensive Bioinformatics Analysis Reveals Molecular Signatures and Potential Caloric Restriction Mimetics with Neuroprotective Effects: Validation in an In Vitro Stroke Model The Potential of cfDNA as Biomarker: Opportunities and Challenges for Neurodegenerative Diseases Temporal Transcriptomic Differences in Stroke Between Diabetic and Non-Diabetic Mice Discovery of Novel Protein-Coding and Long Non-coding Transcripts in Distinct Regions of the Human Brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1